
Quantum Computers and Their Effects on
Cryptography

Leonardo Mouta Pereira Pinheiro∗, Ivan Guilhon Mitoso Rocha†
Instituto Tecnológico de Aeronáutica

Praça Marechal Eduardo Gomes, 50, São José dos Campos, Brazil
∗leonardomppinheiro@gmail.com

†ivan.rocha@gp.ita.br

Abstract—Modern cryptography systems are generally based
on the hypothesis of provable security, meaning that breaking the
system is equivalent to solving a problem which is considered
hard. Two such examples are the RSA and ElGamal cryp-
tosystems, which are widespread in commercial applications and
whose security is based, respectively, on the problems of integer
factorization and discrete logarithm computing. We present the
mathematical formalization of these two cryptography schemes
and show how quantum computers are able to solve both these
problems in polynomial time by means of Shor’s algorithm,
thus posing a serious threat to current secrecy standards. Fun-
damental concepts of quantum superposition, quantum Fourier
transforms, and quantum phase estimations are discussed. As a
countermeasure to quantum computers, however, it is possibility
to implement quantum-based key exchange protocols, which can
withstand attacks by both classical and quantum computing,
thus providing an avenue for the reestablishment of secure
communications.

I. INTRODUCTION

This paper is intended as a final thesis for a minor degree
in physics engineering. It aims to explore some introductory
properties of quantum computing by following a thread of
how this new technology is expected to change the field of
cryptography.

In a general sense, the evolution of classical cryptography
can be described as a gradual growth from the applications
of cryptography through ancient, medieval and early-modern
times, where it was based more on intuition than on math-
ematics [1], followed by the beginning of a mathematical
formalization of cryptography ushered in by Shannon [2],
down to current modern cryptography, which is fundamental
for our Internet-based world [3].

Although the current cryptography standards have given the
modern world a very high sense of security, this status quo
risks being undermined by the rise of quantum computing. The
advent of quantum computing in the 1980s has created a new
way for us to think about machines, for contrary to classical
computers, which run on deterministic bits of ones and zeroes,
quantum computers are able to perform calculations on the
superpositioned quantum states of “qubits”. By manipulating
all these superpositions in a parallel fashion, quantum com-
puters are able to efficiently solve problems that remained
unsolved by classical approaches. Since the security of most
modern cryptosystems rests upon these problems, researchers
soon found quantum algorithms, such as Shor’s algorithm, that

have the potential to render our current cryptography obsolete
[4].

While such a scenario is still only theoretically possible, for
real quantum computers suffer from implementation setbacks
that are not easy to solve, it would be wise to prepare
for the day when quantum computers are widespread. In
that sense, some have started researching the field of “post-
quantum cryptography” in order to create security protocols
and cryptosystems that could withstand attacks from quantum
computers, thus restoring the desired secrecy levels which are
expected in day-to-day communication [5].

This work intends to explore all these points in order to
provide an overall view of this shift from classical paradigms
to post-quantum systems. Concerning its structure, it is as
follows: section II explores the current paradigms of modern
cryptography, focusing specifically on the RSA and ElGa-
mal cryptosystems; section III provides an overview of the
functioning and formalism of quantum computers, such as
qubits, quantum state manipulation, quantum circuits, and so
on. It also details Shor’s algorithm, which is the fundamental
object of quantum cryptanalysis, as well as the algorithm’s
building blocks, which are the quantum Fourier transform and
quantum phase estimation circuits; section IV explains the
general principles of post-quantum cryptography as well as
one possible post-quantum alternative for secrecy, quantum
key distribution, which is exemplified by the BB84 protocol;
finally, section V provides a brief conclusion for this work.

II. CLASSICAL PUBLIC-KEY CRYPTOGRAPHY SCHEMES

A. Overview of Classical Cryptosystems

Although cryptography has existed for a fairly long time
in human history, it is only recently that mathematicians
have started to explore this field within the constraints of
mathematical rigor. Modern cryptography rests on the notion
of cryptosystem [3], which is defined as a tuple (P, C,K, E ,D)
where:

1) P is the set of all possible plaintexts;
2) C is the set of all possible ciphertexts;
3) K is the keyspace, the set of all possible keys;
4) E is the set of encryption functions ek : P ×C and D is

the set of all decryption functions dk : C × P;

1

5) For each key k ∈ K, there exists a function ek ∈ E and
a function dk ∈ D such that dk(ek(x)) = x for every
x ∈ P .

It is worth mentioning that the conversion from human-
readable plaintext and ciphertext into a form that is mathemat-
ically workable involves some sort of encoding mechanism,
such as ASCII or UTF-8, for example.

The effectiveness of a cryptosystem is not stated in the
preceding definition. A first attempt at defining which criteria
make a cryptosystem safe was made by Auguste Kerckhoffs
in the 19th century [1]. The six points originally listed are
known as Kerckhoffs’s principle, but only the first two are of
substantial importance to this work [1]: 1) The system should
be, if not theoretically unbreakable, unbreakable in practice;
2) compromise of the system should not inconvenience the
correspondents. Starting with the second point, what it means
is that the security of the system should not assume the secrecy
of how to construct ek and dk from key k, resting instead with
the inability of eavesdropping parties to access the key itself.

By having the security of the system residing with the key,
we create the additional problem of how to secretly transmit
said key between two parties. One possibility is assume the
existence of a previously secured channel between the parties,
such as in Fig. 1. In this case, Alice generates a key and
sends it to Bob via this secure channel, which is then used
to encrypt communications through the unsecured channel.
This hypothesis, however, is generally unrealistic, but for
cryptosystems where ek is equal to dk (or at least simply
derivable from one another), the so-called “symmetric key”
cryptosystems, there is no viable alternative to it.

On the other hand, one could pursue the alternative “public
key” cryptosystems, such as shown in Fig. 2, where the
fundamental assumption is that ek and dk are not easily
derived from one another. With public key scheme, one does
away with the need for a previously secure channel. This can
be achieved in the following manner: Alice generates a key
that consists of a public part and a private part. The public
key is sent in the open and is used to encrypt messages, with
the private key being used to decrypt the message.

Fig. 1: Basic architecture of encrypted communications (using
a symmetric key cryptosystem).

Fig. 2: Basic architecture of encrypted communications (using
a public key cryptosystem).

Returning to the first of Kerckhoffs’s principle, we must
specify what we mean by “unbreakable”. There are many
ways to break a cipher: finding the key from the messages,
using an alternative algorithm that allows decryption without
knowledge of the key, alter a sent message, and so on. All these
ideas hinge on finding a way around the scheme proposed
by the cryptosystem. Shannon broadly defines three types of
security [2] :

• Unconditional security, where a cryptosystem cannot be
broken even with infinite computational power;

• Provable security, where breaking a cryptosystem is
proven to be equivalent to solving a well-studied problem
that is considered difficult;

• Computational security, where breaking the cryptosystem
requires at least N operations, where N is a very large
number.

The type of security depends on the type of “break” trying to
be achieved. Furthermore, it also depends on the type of attack
being made, such as ciphertext-only attack, known-plaintext
attack, chosen-plaintext attack, and so on.

Over the years, the sheer practicality of public-key systems
over symmetric-key ones has made them the preferred industry
in p2p communications. In the following section, we shall
explore two notable examples of public-key cryptosystems,
the RSA and the ElGamal.

B. RSA Cryptosystem

Before describing some tools of the RSA cryptosystem,
some tools of modular arithmetic are required. The notation
developed on this part shall be kept throughout the rest of this
work.

Definition of modular arithmetic: for some integer n > 0,
we define the set Zn = {0, 1, .., n−1}. Considering a, b ∈ Zn,
one can define two operations ⊕, ⊗ such as (1), where + and
× are, respectively, the usual addition and multiplication. The
algebraic structure (Zn,⊕,⊗) thus satisfies the axioms of a
commutative ring with unity1 and is the basis for constructing
modular arithmetic [6].{

a⊕ b = (a+ b) mod n

a⊗ b = (a× b) mod n
(1)

In (1), it is important to qualify the notation mod , which
will be used frequently. First we specify Euclidean division

1Closure, associativity, identity, commutativity and inverses for addition;
closure, associativity, identity, and commutativity for multiplication; and left
and right distributivity of multiplication over addition

2

for two integers a and b, with b ̸= 0, as a = b × q + d,
where q is the quotient and d is the remainder, with the added
requirement that 0 ≤ d < |b|. The notation a mod b means
taking the remainder of the division of a by b: a mod b =
d = a− b× q. On the other hand, considering a third integer
c, the congruence notation a ≡ c (mod b) means there exists
some integer k such that (a− c) = b× k.

Modular multiplicative inverses: taking the ring (Zn,⊕,⊗)
and an element a ∈ Zn, this element has an inverse a−1 ∈ Zn

such that a⊗a−1 = a−1⊗a = 1 if and only if gcd(a, n) = 1,
where gcd means the “greatest common divisor” [6]. We shall
notate the set Z∗

n as the set of all integers 0 ≤ a < n such that
gcd(a, n) = 1. It follows that in (Z∗

n,⊗), every element has
a multiplicative inverse. Furthermore, for some prime number
p, (Zp,⊕,⊗) is promoted to field, since all non-zero elements
now have a multiplicative inverse [6].

Exponentiation: the ring (Zn,⊕,⊗) allows us to define an
exponentiation notation such that ak = a⊗a⊗...⊗a (k terms),
a0 = 1, and a−k = (a−1)k (if such inverse exists), for some
integer k.

Extended Euclidean algorithm: this algorithm takes two
inputs a and b and returns integers r, s and t such as in (2),
running on time complexity O(log(min(a, b))) on the worst
case scenario [6]. {

gcd(a, b) = r

s× a+ t× b = r
(2)

Finding multiplicative inverses: considering integer a ∈ Z∗
n,

running the extended Euclidean algorithm on a and n yields,
as per (2), s × a + t × n = gcd(a, n) = 1. Rearranging, we
get s× a− 1 = −t× n→ s× a ≡ 1 (mod n). We can take
a−1 = s mod n and thus find the multiplicative inverse of a
in a time-efficient manner.

Euler’s totient function: Euler’s totient function ϕ(n) is
defined for some integer n > 0 as the number of integers
k such that 0 ≤ k < n and gcd(k, n) = 1. Theorem:
considering the fundamental theorem of arithmetic, we can
write n as a unique product of primes n =

∏
i p

ei
i , where

each pi is a distinct prime and ei a positive integer. With that
decomposition, it can be proven that ϕ(n) =

∏
i(p

ei
i − pei−1

i)
[6].

Euler’s theorem: consider positive integers a and n such that
a ∈ Z∗

n. Euler’s theorem postulates that aϕ(n) ≡ 1 (mod n)
[6].

Given the previous definitions, it is now possible to describe
the basics of the RSA cryptosystem.

Suppose two parties, Alice and Bob, want to establish a
secure, one-way communication from Bob to Alice in a hostile
environment, such as shown in Fig. 2. An eavesdropper Eve
can intercept any sort of communication transmitted between
the parties over the unsecured channels, in ciphertext-only
attack fashion. Eve can also access any public information
available to the parties. The RSA cryptosystem aims to provide
provable security based on the problem of integer factorization,

for which there is no known polynomial-time classic algorithm
[3].

The procedure for RSA can be divided in two parts: key
generation and message exchange. These are described as
follows [3]:

Key generation:
1) Alice generates a pair of two large random primes, called

p and q. Alice then calculates N = p× q;
2) Alice calculates ϕ(N) = (p− 1)(q − 1);
3) Alice picks a number a (random or not), such that

gcd(a, ϕ(N)) = 1;
4) Alice calculates b such that a × b ≡ 1 (mod ϕ(N))

using the extended Euclidean algorithm;
5) Alice sends the pair (N, a) over the network and keeps

the values (p, q, b) private.
Message exchange:
6) Alice and Bob both know N , so they can build the ring

(ZN ,⊕,⊗). All further operations in the exchange now
refer to operations done within the ring’s algebra;

7) Bob encodes his message into a number x ∈ ZN

representing the plaintext, using some previously agreed
upon encoding scheme;

8) Bob builds a ciphertext y ∈ ZN by taking y = xa;
9) Bob sends y over the network;

10) Alice receives y and calculates x′ = yb;
11) Alice decodes x′ using the same encoding scheme.

Proof of operation: in order to prove that the system works,
we need to show that x′ = x. The very construction of the
system leads us to (3) by expanding the ring’s algebra notation
and applying the axioms of congruence algebra [6]. On the
other hand, the construction of the modular inverse b leads to
(4), which can be substituted into (3), resulting in (5). Euler’s
theorem2, reduces (5) to (6). Furthermore, since x ∈ ZN and
the modulo operation in deriving x′ also ensures x′ ∈ ZN , the
congruence becomes an equality such as in (6), thus proving
that the cryptosystem successfully transmits the message so
that x′ = x.{

y ≡ xa (mod N)

x′ ≡ yb (mod N)
→ x′ ≡ xa×b (mod N) (3)

a× b ≡ 1 (mod ϕ(N)) → ∃k ∈ Z|a× b = 1+ kϕ(N) (4)

x′ ≡ (xϕ(N))kx (mod N) (5)

x′ ≡ x (mod N) → x′ = x ■ (6)

Proof of security: the eavesdropper Eve has access to the
pair (N, a), since this is public info. As per the second Kerck-
hoffs principle, she also knows the functioning of the system.

2The rare case where gcd(x,N) ̸= 1 is covered by combining Fermat’s
little theorem and the Chinese remainder theorem, resulting in the exact same
result xϕ(N) ≡ 1 (mod N) for the case when N is the product of two
primes. This proof is shown in [3].

3

Suppose Eve executes a ciphertext-only attack, capturing y.
In order to obtain x′ = yb, she needs to find b, which is
the missing link. Once she knows ϕ(N), b can be calculated
quickly via the extended Euclidean algorithm. In order to find
ϕ(N), Eve has two choices:

1) She can count k from 1 to N and efficiently check
gcd(k,N). This guarantees computational security, for
this method takes at least O(N) steps, and N was
constructed to be large;

2) She can use the prime decomposition of N to calculate
ϕ(N). This ensures the system has provable security,
since efficient integer factorization of semi-primes such
as N is an open problem in mathematics [7]. At the time
of writing (2022), the record for integer factorization
rests with [8], who reported factoring RSA-240 and
RSA3-250.

These facts prove the security of the system against
ciphertext-only attacks for the ideal case. Other forms of
exploits will be described later on.

Formalization: in order to complete our description of the
RSA cryptosystem, a formal definition based on the scheme
shown in II-A is provided:

The RSA Cryptosystem: Take an integer N = p × q,
where p and q are randomly generated primes, which
are chosen to be large so that factoring N is a hard
problem. Define the modular arithmetic ring (ZN ,⊕,⊗).
Also define:

• P = ZN

• C = ZN

• K = {(N, p, q, a, b)|a× b ≡ 1 (mod ϕ(N))}
• Given a key k ∈ K:

– ek(x) = xa, ∀x ∈ P
– dk(y) = yb, ∀y ∈ C

The tuple (N, a) constitutes the public key and the tuple
(p, q, b) constitutes the private key.

Although we have proven that the RSA cryptosystem pos-
sesses provable security, there are some mistakes in imple-
mentation that render it unsafe, for example [3]:

• In the case where a and x are small, extraction of the
original message could possibly be obtained by perform-
ing a simple a-root extraction. A padding scheme should
be used to avoid this sort of problem;

• The attacker can, theoretically, try to encrypt different
plaintexts using the public key until they find one whose
encryption matches the ciphertext y, meaning RSA is not
semantically secure without randomized padding [9];

• Some prime-generating libraries are liable to certain types
of exploits which make determining p and q easier than
factoring N . Care should be exercised when creating
these random numbers, which is a whole field unto itself;

3The numbers when describing RSA refer to a notation proposed by the
“RSA Factoring Challenge” and can either mean the number of digits of N ,
as is the case in the records mentioned, or the number of bits occupied by
N , such as in RSA-2048.

There are other more effective attacks against RSA, es-
pecially if we also consider active adversaries. This means
that the system, although theoretically robust, is not trivially
implemented in real-world scenarios. It is recommended that
standards such as PKCS [10] be rigorously followed when
implementing RSA cryptosystems.

C. ElGamal Cryptosystem

While RSA was based on the problem of integer factoriza-
tion, the ElGamal cryptosystem is based on the problem of
computing discrete logarithms, which requires the definition
of some additional concepts. As in the case with RSA, this
notation will be kept constant throught this work.

Cyclic groups: considering a multiplicative group G =
(G, ·), this group is a multiplicative cyclic group if and only
if there is an element g ∈ G such that G = {gk|k ∈ Z}, with
exponentiation being defined as gk = g · g · ... · g (k terms),
g0 = 1G, and g−k = (g−1)k [6]. The element g is called
a generator of the group. It is worth mentioning the group
(Z∗

n,⊗) is multiplicative cyclic if and only if n = 2, 4, pk, or
2pk, where p is an odd prime number and k is some positive
integer [6] [11].

Order of elements: the order ord(a) of an element a in
multiplicative group G is the smallest positive integer n such
that an = 1G. If the group is cyclic and a is a generator of
the group, its order is equal to the number of elements in set
G [6]. Thus, ord(G) and ord(G are also used to describe the
number of elements in the set/group. For group (Z∗

p,⊗) we
have ord(Z∗

p) = ϕ(p) = p− 1.
Generating the group from the order: for some generator

g of cyclic group (G, ·) such that ord(g) = n, we have that
G = {g0, g1, g2, ..., gn−1} [6].

Finding generators: although there is no analytical form to
find generators of a group, [12] describes an efficient algorithm
for finding generators of multiplicative cyclic group (G, ·) by
trial and error.

Discrete logarithm definition: let G = (G, ·) be a multiplica-
tive cyclic group with some generator α such that ord(α) = n.
For some element β ∈ G, the discrete logarithm problem
consists of finding x, with 0 ≤ x < n, such that αx = β.
This is notated as x = logα β, with group G kept implicit
[12].

Given the previous definitions, it is now possible to describe
the basics of the ElGamal cryptosystem.

The situation is kept the same: two parties, Alice and
Bob, want to establish a secure, one-way communication from
Bob to Alice in a hostile environment, such as shown in
Fig. 2. The same eavesdropper Eve can intercept any sort
of communication transmitted between the parties over the
unsecured channels, in ciphertext-only attack fashion. Eve can
also access any public information available to the parties. The
ElGamal cryptosystem aims to provide provable security based
on the problem of computing discrete logarithms, for which
there is no known time-efficient classic algorithm [3].

4

The procedure for ElGamal can be divided in two parts:
key generation and message exchange. These are described as
follows [3]:

Key generation:
1) Alice generates a large prime (random or not) p, there-

fore obtaining the cyclic multiplicative group (Z∗
p,⊗)

(which will be used subsequent algebraic operations in
the cryptosystem);

2) Alice chooses a generator α of (Z∗
p,⊗);

3) Alice randomly chooses an element r ∈ Z∗
p and calcu-

lates β = αr;
4) Alice sends (p, α, β) over the network and keeps r

private.
Message exchange:
5) Bob receives (p, α, β), thus constructing cyclic group

(Z∗
p,⊗);

6) Bob encodes his message into a number x ∈ Z∗
p

representing the plaintext, using some previously agreed
upon encoding scheme;

7) Bob chooses a random integer m ∈ Z∗
p;

8) Bob computes y1 = αm;
9) Bob computes y2 = x⊗ βm;

10) Bob sends (y1, y2) over the network;
11) Alice receives (y1, y2) and calculates x′ = y2⊗ (yr1)

−1;
12) Alice decodes x′ using the same encoding scheme.

Proof of operation: in order to prove that the system
works, we need to show that x′ = x. In order to achieve
this end, we can start by expanding the notation of the
modulo operations and explicitly showing the components
of the ciphertexts, as in (7). The commutativity of modular
exponentiation [6] yields (8), which can be combined with the
fact that β ≡ αr (mod p), resulting in (9). Here, it is evident
that βm × (βm)−1 ≡ 1 (mod p), meaning (9) simplifies into
(10). Moreover, since the modulo operation embedded in ⊗
ensures that both x and x′ are in Z∗

p, the congruence in (10)
is actually an equality, thus proving that the cryptosystem
successfully transmits the message so that x′ = x.

x′ = y2⊗(yr1)
−1 → x′ ≡ x×βm×(αm×r)−1 (mod p) (7)

αm×r ≡ αr×m ≡ (αr)m (mod p) (8)

x′ ≡ x× βm × (βm)−1 (mod p) (9)

x′ ≡ x (mod p) → x′ = x ■ (10)

Proof of security: the eavesdropper Eve has access to the
tuple (p, α, β), since this is public info. As per the second
Kerckhoffs principle, she also knows the functioning of the
system. Suppose Eve executes a ciphertext-only attack, cap-
turing (y1, y2). In order to obtain x′ = y2 ⊗ (yr1)

−1, Eve has
two choices, which essentially boil down to the same issue of
calculating a discrete logarithm [12]:

1) Knowing y1 = αm and y2 = x ⊗ βm, Eve can try to
find m = logα y1 and then substitute y2 = x⊗ βlogα y1

to try and solve for x. If she executes a trial and
error method, and assuming an even distribution on the
choice of m, she will have to analyze O(p) elements
on average, which is infeasible for large p, thus proving
computational security.

2) Eve could try to find r = logα β and just apply the
decryption function directly. If she executes a trial and
error method, and assuming an even distribution on the
choice of a, she will have to analyze O(p) elements on
average, which is infeasible for large p, thus proving
computational security.

In both cases, the underlying problem is finding the discrete
logarithm of some value, which has no known polynomial-
time classical algorithm [12]. The current record for discrete
logarithm computation is also held by [8], who computed
a discrete logarithm modulo (RSA-240 + 49204). These
facts demonstrate the provable security of the system against
ciphertext-only attacks for the ideal case. Other forms of
exploits will be described later on.

Formalization: in order to complete our description of
the ElGamal cryptosystem, a formal definition based on the
scheme shown in II-A is provided:

The ElGamal Cryptosystem: Consider a prime number
p which is large enough so that the discrete logarithm
problem in multiplicative cyclic group (Z∗

p,⊗) is hard.
Let α ∈ Z∗

p be a generator of said group. Define:
• P = Z∗

p

• C = Z∗
p × Z∗

p

• K = {(p, α, r, β)|αr = β}
• Given a key k ∈ K and a random integer m ∈ Z∗

p:
– ek(x,m) = (y1, y2)|y1 = αm, y2 = x ⊗
βm, ∀x ∈ P

– dk(y1, y2) = y2 ⊗ (yr1)
−1,∀(y1, y2) ∈ C

The tuple (p, α, β) constitutes the public key and the
value r constitutes the private key.

Although we have proven that the ElGamal cryptosystem
possesses provable security, there are some mistakes in imple-
mentation that render it unsafe, for example [3]:

• In the case where α is small and p is large, the discrete
logarithm could become a “normal” logarithm problem.
A padding scheme should be used to avoid this sort of
problem;

• The attacker can, theoretically, try to encrypt different
plaintexts using the public key until they find one whose
encryption matches the ciphertext y, meaning ElGamal is
not semantically secure without randomized padding [9];

• If the private key r is too small, it might be discovered
by trial and error;

More effective attacks against ElGamal exist, especially if
we also consider active adversaries. This means that the sys-
tem, although theoretically robust, is not trivially implemented
in real-world scenarios. It is recommended that standards such

5

as PKCS [10] be rigorously followed when implementing
ElGamal cryptosystems.

III. QUANTUM COMPUTING AND ITS IMPACT ON
CRYPTOGRAPHY

A. Fundamentals of Quantum Computing

1) Single Qubit Systems and their Representations: While
classical computers operate in terms of “bits”, quantum com-
puters are based on the concept “qubits” [13]. The difference
between the two reflects a difference between the deterministic
and the probabilistic. A classical computer could, for example,
read an electric voltage and associate a certain bit value with
it: if the voltage is below a certain threshold, it is assigned the
bit “0”; if the voltage is higher the same threshold, it gets the
bit “1”. Since electrical signals (and other physical entities)
follow classical laws, the signal can either be 0 or 1, meaning
it is binary [5]. On the other hand, consider the spin of some
electron, which is described by quantum mechanics. Say we
assign the spin up to the state |0⟩ and the spin down to the
state |1⟩. This way, any state |ψ⟩ of the electron’s spin can
be expressed as in (11), where the normalization is required
as per Born’s rule. The range of all possible values of |ψ⟩ is
called its vector space or state space [5].

|ψ⟩ = α|0⟩+ β|1⟩ | α, β ∈ C, |α|2 + |β|2 = 1 (11)

We can use the electron’s spin (or some other physical entity
bound by quantum mechanics) as a means of transmitting
information, therefore stepping into the world of quantum
computing.

Any quantum signal whose state can be written as a super-
position4 of two binary states is a “quibt” [13]. In our example,
the spin of an electron is a qubit. The pair {|0⟩, |1⟩} represents
an orthonormal basis, called the computational basis, which
can be used to perform measurements. These measurements
allow us to access the information stored in a qubit and
transform it into a classical signal. This is generally done by
assigning |0⟩ → 0 and |1⟩ → 1.

Some differences in relation to classical computing already
start to appear. Consider, for example, the qubit whose state
is given by |ψ⟩ = 1√

2
|0⟩ + 1√

2
|1⟩. If we measure this signal

with respect to the computational basis, we get Pr[|0⟩] =
Pr[|1⟩] = 1

2 , meaning that the same signal, when converted
to a classical bit as per the equivalence previously established,
will yield bit 0 50% of the time and bit 1 50% of the time.
Therefore, the same signal can result in different values when
measured. This property is what makes quantum computing
different than classical computing. While a classical bit can
be either 0 or 1, a quantum bit exists as a whole range of
superpositions, and its measured value is probabilistic.

We previously mentioned the computational basis {|0⟩, |1⟩},
but in reality any pair of states {|a1⟩, |a2⟩} such that ⟨ai|aj⟩ =

4Some definitions of superposition require that αβ ̸= 0, but here the term
is used more broadly. A signal which is equal to one of the binary states is
still considered a qubit.

δij , with δij the Kronecker delta, can be used a basis for the
qubit’s state space. Although we have discussed measurements
against the computational basis, in reality measurements can
be made against any orthonormal basis [5]. Some special
orthonormal state pairs are particularly noteworthy [5]:

• Basis {|+⟩, |−⟩} (also called the Hadamard basis)
– |+⟩ = 1√

2
(|0⟩+ |1⟩)

– |−⟩ = 1√
2
(|0⟩ − |1⟩)

• Basis {|+ i⟩, | − i⟩}
– |+ i⟩ = 1√

2
(|0⟩+ i|1⟩)

– | − i⟩ = 1√
2
(|0⟩ − i|1⟩)

There are several ways to represent a single qubit. One of
them is the vector representation, which is particularly useful
when we wish to represent operators/gates as matrices. In this
representation, a state such as the one in (11) written as |ψ⟩ =[
α
β

]
. Henceforth, whenever a vector notation is used, we’ll

assume it is with respect to the computational basis [5].
Another representation of a single qubit system relates to

the concepts of global phase and relative phase. Two qubit
states |ψ⟩ and |ψ′⟩ are considered equivalent (|ψ⟩ ∼ |ψ′⟩)
if there exists a value α ∈ [0, 2π) such that |ψ⟩ = eiα|ψ′⟩.
The angle α is called the global phase of the state [5]. By
manipulating the global phase of the state, it is possible to see

that any qubit state can be written as |ψ⟩ =
[

cos θ
2

eiφ sin θ
2

]
, with

θ ∈ [0, π] and φ ∈ [0, 2π). The angle φ is called the relative
phase [5]. The angle pair (θ, φ) can be used to represent the
qubit using the so-called “Bloch sphere” [14], which is shown
in Fig. 3. In the Bloch sphere, we represent the state |ψ⟩ as a
unit vector from the origin, with θ being its polar angle and φ
its azimuth angle. Another feature of the Bloch sphere is that
it maps the special states previosuly described to key points
on the sphere’s surface [4].

Fig. 3: The Bloch sphere is a useful method for representing
single qubit systems.

2) Multiple Qubit Systems: Suppose we now have two qubit
channels, A and B, each one containing a state: |ψA⟩A =
a0|0⟩A + a1|1⟩A and |ψB⟩B = b0|0⟩B + b1|1⟩B respectively.

6

The full state |ψ⟩AB of the system is given in (12)., where ⊗
represents the tensor product of the elements [5].

|ψ⟩AB = |ψA⟩A ⊗ |ψB⟩B = a0b0|0⟩A ⊗ |0⟩B
+a0b1|0⟩A ⊗ |1⟩B
+a1b0|1⟩A ⊗ |0⟩B
+a1b1|1⟩A ⊗ |1⟩B

(12)

We can simplify the notation on the right hand side
of (12) by adopting the convention that |a⟩A ⊗ |b⟩B =
|a⟩A|b⟩B = |ab⟩AB , thus converting (12) into (13). The values
{|00⟩AB , |01⟩AB , |10⟩AB , |11⟩AB} form a basis for the com-
plete system, also called the computational basis in analogy
to the single qubit system. Using the vector notation proposed
previously, we have |ψ⟩AB = [a0b0, a0b1, a1b0, a1b1]

T .

|ψ⟩AB = a0b0|00⟩AB

+a0b1|01⟩AB

+a1b0|10⟩AB

+a1b1|11⟩AB

(13)

This notion can be extended. Each qubit is a complex
vector space Vi of computational basis {|0⟩i, |1⟩i}. For
a system of n qubits, the complete vector space is
V = Vn−1 ⊗ ... ⊗ V1 ⊗ V0, with computational basis B =
{|0⟩n−1...|0⟩1|0⟩0, |0⟩n−1...|0⟩1|1⟩0, ..., |1⟩n−1...|1⟩1|1⟩0}
yielding a total of 2n elements [5]. We can both drop
the subscripts and join the basis states in order to keep
the notation for the computational basis more palatable
B = {|0...00⟩, |0...01⟩, ..., |1...11⟩}. It is important, however,
to remember two things: 1) the number of qubits involved in
the system, which should be clear from the context; and 2)
the fact that the rightmost digit of each basis element refers
to qubit 0, the second rightmost to qubit 1, and so on5.

We can compress this notation even further by doing a
binary-decimal conversion on the elements of the basis. By
saying that qubit 0 is the least significant qubit and that
qubit n − 1 is the most significant, we can convert a basis
element |an−1an−2, ..., a1, a0⟩, with ai ∈ {0, 1}, to |k⟩, with
k =

∑n−1
i=0 ai2

i. Using this notation, which shall persist
throughout this work, the computational basis can be written
as B = {|0⟩, |1⟩, ..., |2n − 1⟩}

Example: suppose we have a system with n = 2 qubits, q0,
q1. The least significant qubit is q0 and the most significant
qubit is q1. The computational basis for the system V = V1⊗
V0 is B = {|00⟩q1q0 , |01⟩q1q0 , |10⟩q1q0 , |11⟩q1q0}, which can
be written as B = {|0⟩, |1⟩, |2⟩, |3⟩}.

Concerning the measurements for multiple qubit systems,
they work in a similar fashion to that of single qubit systems.
Suppose a state |ψ⟩ =

∑2n−1
i=0 ai|i⟩ is measured against

the computational basis. The probability of measuring state
|k⟩ is Pr[|k⟩] = |ak|2. By expanding the notation |k⟩ =

5Although different orders can be used, it is important to keep the same
qubit order throughout the development of applications.

|an−1...a1a0⟩ = |an−1⟩n−1...|a1⟩1|a0⟩0, where ai ∈ {0, 1},
we can see that measuring |k⟩ equals measuring |a0⟩ on
qubit 0, |a1⟩ on qubit 1, and so on. From here, it is merely
a question of applying the same encoding to classical bits
seen in section III-A1. Measurements on different basis work
in a similar manner. Assuming an orthonormal basis B′ =
{|bo⟩, |b1⟩, ..., |b2n−1⟩} for the n-qubit vector space (where
n ≥ 1), the probability of measuring state |bi⟩ from state |ψ⟩
is Pr[|bi⟩] = |⟨bi|ψ⟩|2.

Even though the complex vector space for an n-qubit system
was constructed by taking the tensor product of the vector
spaces of the individual qubits V = Vn−1 ⊗ ... ⊗ V1 ⊗ V0,
that does not mean that every state of the system can be
written as a tensor product of states in the original qubits.
When ∄{|ψn−1⟩n−1, ..., |ψ1⟩1, |ψ0⟩0} | |ψ⟩ = |ψn−1⟩n−1 ⊗
... ⊗ |ψ1⟩1 ⊗ |ψ0⟩0, it is said that the system state |ψ⟩ is
entangled [5].

Example: Consider a system of 2 qubits. The state
|ψ1⟩ = [1/2, 1/2, 1/2, 1/2]T can be written as |ψ⟩ =
[1/

√
2, 1/

√
2]T1 ⊗[1/

√
2, 1/

√
2]T0 , meaning it is not entangled.

On the other hand, the state |ψ2⟩ = [1/
√
2, 0, 0, 1/

√
2]T

cannot be written as a tensor product over the qubits, being,
therefore, entangled.

The interest in entangled states lies in the fact that mea-
surements on one qubit yield information about some other
qubit. Rewriting the state |ψ2⟩ of the previous example in full
state notation, we get |ψ2⟩10 = 1√

2
(|0⟩1|0⟩0+ |1⟩1|1⟩0). If we

perform a measure in the computational basis on qubit 0 and
obtain |0⟩, we immediately know that a measure on qubit 1
will yield |0⟩ [5]. Likewise, a measurement on qubit 0 yielding
|1⟩ means we have to measure |1⟩ on qubit 1, and so on.

Some entangled states are of special interest: the so-called
“Bell states”. These are entangled states obtained on 2-qubit
systems that represent, at the same time, the simplest and
maximum entanglement [4]. The Bell states are listed below
[14]:

• |Ψ00⟩ = 1√
2
(|00⟩+ |11⟩)

• |Ψ01⟩ = 1√
2
(|01⟩+ |10⟩)

• |Ψ10⟩ = 1√
2
(|00⟩ − |11⟩)

• |Ψ11⟩ = 1√
2
(|01⟩ − |10⟩)

As a general formula for the Bell states, we can write
|Ψij⟩ = 1√

2
(|0j⟩ + (−1)i|1δ0j⟩), for i, j ∈ {0, 1}. It is also

worth noting that the Bell states are orthonormal, meaning
they can be used to generate proper state superpositions.

3) Operators and Quantum Ports: Operators will be de-
fined as transformations from the state space of a quantum
system to itself [5]. Not all operators imaginable are permis-
sible, for they must satisfy the rules of quantum mechanics.
Namely, the operators, once defined in their vector spaces,
need to satisfy the requirements of linearity (14), for the
principle of superposition to hold, and the preservation of the
inner product (15), so that no contradictions arise in terms of
measurement [5]. In these equations, U is an operator and U†

means the complex conjugate transpose of U . Operators can
be represented as both matrices or bra-ket entities [4].

7

U

k∑
i=1

ai|ψi⟩ =
k∑

i=0

aiU |ψi⟩ (14)

⟨ϕ|U†U |ψ⟩ = ⟨ϕ|ψ⟩ (15)

Equations (14) and (15) can be satisfied for all states if we
have U† = U−1, meaning operators have to be unitary [5].

One very important property of this definition is the no-
cloning theorem: ∄U |U(|a⟩|0⟩) = |a⟩|a⟩, ∀|a⟩ [4]. What this
means is that it is not possible to construct a “cloning” operator
that copies a state to another state without altering the original.
This will be fundamental when discussing the quantum key-
exchange protocols. Another consequence of the restriction
that operators are unitary is that every quantum operator can
be reversed by applying its conjugate transpose.

When an operator is applied to a small number of qubits, it
is also called a gate. Some gates are particularly important, for
they are used in most quantum computing applications. We can
cite, for example, the Pauli gates X (also called a “bit-flip”),
Y and Z [5], which act upon 1-qubit systems. Their names
are derived from the visual effect they entail on the Bloch
sphere: applying an X gate on state |ψ⟩ means rotating this
state π radians around the x axis (and the same logic holds for
gates Y and Z). Even more, given this geometrical reasoning,
it is easy to verify that {|0⟩, |1⟩} are eigenstates of gate Z,
{|+⟩, |−⟩} are eigenstates of gate X , and {| + i⟩, | − i⟩} are
eigenstates of gate Y

• X = |1⟩⟨0|+ |0⟩⟨1| =
[
0 1
1 0

]
• Y = −|1⟩⟨0|+ |0⟩⟨1| =

[
0 1
−1 0

]
• Z = |0⟩⟨0| − |1⟩⟨1| =

[
1 0
0 −1

]
Another fundamental 1-qubit operator is the Hadamard gate:

• H = 1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|−|1⟩⟨1|) = 1√

2

[
1 1
1 −1

]
The importance of this gate is shown in (16), where it maps

{|0⟩, |1⟩} → {|+⟩, |−⟩}. For an element |i⟩, i ∈ {0, 1} of
the 1-qubit computational basis, we can write the Hadamard
transform as H|i⟩ = 1√

2
(|0⟩+ (−1)i|1⟩).

Although the Hadamard gate was built for 1-qubit systems,
it can be generalized for some specific applications, such as
in (17), where we have an n-qubit system at state |0⟩n−1 ⊗
...⊗|0⟩1⊗|0⟩0 = |0⟩⊗n (the exponential notation means only
a repetition of the tensor product). We can see that such an
application takes the initial state, which can be obtained by
setting all original qubits to state |0⟩, into a homogeneous
superposition of the computational basis’s elements for the n-
qubit state space [4].

H|0⟩ = 1√
2

[
1 1

1 −1

][
1

0

]
= 1√

2

[
1

1

]
= |+⟩

H|1⟩ = 1√
2

[
1 1

1 −1

][
0

1

]
= 1√

2

[
1

−1

]
= |−⟩

(16)

H⊗n|0⟩⊗n = (H|0⟩)⊗n

=
1√
2n

(|0...0⟩+ |0...1⟩+ ...+ |1...1⟩)
(17)

As for multiple-qubit gates, the most important one is the
CNOT gate which act on 2-qubit systems. Its use, which is
illustrated in (18), means that it flips the state of the second
qubit if the first qubit is in state |1⟩, but conserves the state
if the first qubit is in state |0⟩. For superpositioned states, we
can write the state’s decomposition over the computational
basis and then apply the CNOT gate accordingly using the
operator’s linearity.

• CNOT = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

CNOT |00⟩ = |00⟩
CNOT |01⟩ = |01⟩
CNOT |10⟩ = |11⟩
CNOT |11⟩ = |10⟩

(18)

Any operator can be made into a controlled operator,
meaning it only acts upon the state if the controller state
is |1⟩, doing nothing otherwise [15]. This notion can also
be extended to create classically-controlled gates, which only
apply an operator if it receives an input 1 from a classical bit.

Gates can be applied in sequence and in parallel to generate
circuits, which form the core of quantum computation.

4) Circuits: Gates can be combined into circuits, which
form the core of quantum computing. The circuits shown
in this work, such as in Fig. 4, were obtained using Qiskit
[14], which is a python-based package for quantum computing
developed by IBM. The rules for understanding quantum
circuits are:

1) Information flows from left to right;
2) Qubit registers, which are represented by single lines,

are numbered, and the higher the value, the more signi-
fication the qubit;

3) Double lines represent classical bits, It is possible to
have either many double lines, each one representing a
bit, or a single double line representing a bit string;

4) Measurements, which are always done against the com-
putational basis, take a 1-qubit state to a classical bit
in accordance to the encoding in section III-A1. If
measuring into a bit string, significance is preserved;

5) Gates are represented by squares. The list of most
common gates can be found in Fig. 5.

8

Fig. 4: An example quantum circuit, obtained from Qiskit [14].

Fig. 5: The main gates used in quantum circuits [14].

To further solidify our understanding of quantum systems,
some examples are shown here.

Consider the simple, 1-qubit circuit in Fig. 6. In it we have
|ψ1⟩ = |0⟩. After passing the Hadamard gate, we get |ψ2⟩ =
H|ψ1⟩ = H|0⟩ = |+⟩. Measuring |ψ2⟩ = |+⟩ against the
computational should entail Pr[|0⟩] = Pr[|1⟩] = 1

2 , meaning
we should get bit 0 and bit 1 with equal probability. Qiskit
allows us to run this circuit either on a classical computer6 or
on one of IBM’s quantum computers. The results of running
this circuit 1024 times are shown in Fig. 7 with these being
in agreement with our predictions.

6The classical computer simulates the quantum computer by using ran-
domness packages. Evidently, this is less efficient than using a real quantum
computer [14].

Fig. 6: A simple quantum circuit as an example.

Fig. 7: Measurements obtained by running the circuit in Fig.
6 in Qiskit.

We can use quantum circuits for more interesting applica-
tions. One such possibility is generating bell states using the
circuit in Fig. 8, where i, j ∈ {0, 1}, meaning we can start the
qubit registers at any one of the 1-qubit basis elements. This
way, we get (19). After applying the Hadamard gate at qubit
1, we arrive at (20). We can use the linear property of the
CNOT operator to get to (21). The CNOT gate only acts if
the controlling qubit is in state |1⟩, meaning (21) is identical
to (22), which matches our previous equation for Bell states
in section III-A2, thus proving that the system is successful
in its objective.

|ψ1⟩ = |i⟩1|j⟩0 (19)

|ψ2⟩ =
1√
2
(|0⟩1 + (−1)i|1⟩1)|j⟩0

=
1√
2
(|0⟩1|j⟩0 + (−1)i|1⟩1|j⟩0)

(20)

|ψ3⟩ = CNOT |ψ2⟩

=
1√
2
(CNOT (|0⟩1|j⟩0) + (−1)iCNOT (|1⟩1|j⟩0))

(21)

|ψ3⟩ =
1√
2
(|0⟩1|j⟩0 + (−1)i|1⟩1|δ0j⟩0) = |Ψij⟩ (22)

9

Fig. 8: Quantum circuit for generating Bell states.

Also, we can build a circuit to solve the inverse problem
of finding i, j given a Bell state |Ψij⟩. This problem is called
“Bell measurement”. Since both the CNOT and H operators
used in Fig. 8 are real and symmetric, they are their own
inverses. Therefore, all we need to do is run the circuit in the
“other direction”, as in Fig. 9 [14].

Fig. 9: Quantum circuit for performing Bell measurements.

In the following sections, we shall show some particular
circuits that serve as building blocks for Shor’s algorithm.

B. Quantum Fourier Transform (QFT)

Before moving on to the quantum Fourier transform (QFT),
which is a fundamental part of Shor’s algorithm, we should
recall that, as shown in III-A2, the state |ψ⟩ of an n-qubit
system can be written as in (23), where the compressed
decimal notation for the computational basis hides behind it
the binary computational basis that exists in each individual
qubit [14].

|ψ⟩ =
2n−1∑
i=0

ai|i⟩ | ai ∈ C,
2n−1∑
i=0

|ai|2 = 1 (23)

It is also wise to recap the behavior of the classical discrete
Fourier transform (DFT): let x⃗ = [x0, x1, ..., xN−1]

T be a
vector. The DFT maps vector x⃗ to vector y⃗ = [y0, y1, ..., yN−1]
according to the formula in (24) [14]7. It is possible to
shorthand e

2πi
N jk = ωjk

N . Computational implementations of
the DFT follow an algorithm dubbed the fast Fourier transform
(FFT). When N = 2n for some n ∈ Z, the FFT runs on time
O(Nn) [16].

7Other definitions exist for the DFT, but this is the most convenient for our
future applications.

yk =
1√
N

N−1∑
j=0

xje
2πi
N jk (24)

In a similar manner, let |X⟩ be a state in an n-qubit system.
As per (23) and writing 2n = N , let |X⟩ =

∑N−1
j=0 xj |j⟩. The

QFT maps |X⟩ to state |Y ⟩ =
∑N−1

k=0 yk|k⟩ in the same vector
space using equation (25) [14]. It is also worth mentioning that
the notation |X̃⟩ = QFT |X⟩, with |X̃⟩ =

∑N−1
k=0 x̃i|k⟩ is also

used to express quantum Fourier transformations.

yk =
1√
N

N−1∑
j=0

xjω
jk
N (25)

We can manipulate (25) so that it can be used in a quantum
gate formulation QFT |X⟩ = |Y ⟩, which is not yet the case.
By analyzing the particular case |X⟩ = |j⟩ in (25), where
|j⟩, 0 ≤ j < N is one of the elements of the computational
basis for the n-qubit system, (25) simplifies to yk = 1√

N
ωjk
N .

By summing this result over 0 ≤ k < N , we arrive at (26),
which expresses what happens if we apply QFT to an element
of the computational basis.

QFT |j⟩ = 1√
N

N−1∑
k=0

ωjk
N |k⟩, 0 ≤ j < N, j ∈ Z (26)

Considering the notation in (23) and the linear property
of quantum operators, we can deduce (27), which shows one
possible way how one might calculate the full QFT for state
|Y ⟩ from a general state |X⟩. By substituting (26) into (27),
we arrive at (28), which allows us to isolate the QFT operator
in (29).

|Y ⟩ = QFT

N−1∑
j=0

xj |j⟩

 =

N−1∑
j=0

xjQFT |j⟩ (27)

|Y ⟩ = 1√
N

N−1∑
j=0

N−1∑
k=0

ωjk
N xj |k⟩

=
1√
N

N−1∑
j=0

N−1∑
k=0

ωjk
N |k⟩⟨j|X⟩

=

 1√
N

N−1∑
j=0

N−1∑
k=0

ωjk
N |k⟩⟨j|

 |X⟩

(28)

QFT =
1√
N

N−1∑
j=0

N−1∑
k=0

ωjk
N |k⟩⟨j| (29)

Returning to (26), we can expand the decimal notation
into binary notation, arriving at (30), where it is important
to remember: 1) that basis elements are not entangled and
thus can be decomposed in the tensor product; and 2) that the
most significant qubit is the one with the highest index.

10

QFT |j⟩ = 1√
N

∑
kn−1,...,k0

∈{0,1}

ω
j(2n−1kn−1+...+20k0)
N |kn−1⟩...|k0⟩

=
1√
N

∑
kn−1,...,k0

∈{0,1}

0⊗
p=n−1

ω
j2pkp

N |kp⟩

=
1√
N

0⊗
p=n−1

∑
kn−1,...,k0

∈{0,1}

ω
j2pkp

N |kp⟩

=
1√
N

0⊗
p=n−1

(|0⟩+ ωj2p

N |1⟩)

(30)

Expanding (30) and also noting that |j⟩ = |jn−1⟩⊗...⊗|j0⟩,
we arrive at (31), which contains a very important piece of
information about the QFT: while the basis element |j⟩ was
written in terms of elements {|0⟩, |1⟩}, which belong to the
z axis in the Bloch sphere, the qubit components of |j̃⟩ are
in the plane x − y of the Bloch sphere. This process can be
understood as encoding information about the binary form of
a number into the relative phase of the qubit state vectors (and
vice-versa).

QFT (|jn−1⟩ ⊗ ...|j1⟩ ⊗ |j0⟩) =
1√
2n

(|0⟩+ e
2πi
2 j |1⟩)⊗

...

⊗ (|0⟩+ e
2πi

2n−1 j |1⟩)
⊗ (|0⟩+ e

2πi
2n j |1⟩)

(31)

We can illustrate this idea with an example using Qiskit:
consider a 4-qubit system. We can write the basis element
|7⟩ = |0⟩|1⟩|1⟩|1⟩. Representing these individual qubits in
separate Bloch spheres, we get the result in shown in Fig.
10a. The QFT of this element is, as per (31), |7̃⟩ = 1

4 (|0⟩ +
ei7π|1⟩)(|0⟩+ ei 7π2 |1⟩)(|0⟩+ ei 7π4 |1⟩)(|0⟩+ ei 7π8 |1⟩), which is
shown in Fig. 10b. Thus, we went from a binary encoding of
number 7 on the z axis to a relative phase encoding of the
same number.

In terms of the circuit implementation of the QFT, a detailed
description is beyond the scope of this work, but it can be
achieved through a combination of Hadamard, rotation, and
swap gates [14]. We shall limit ourselves to considering the
QFT as a single, black-box gate, such as the one in Fig. 11,
which implements the previous example, for |ψ1⟩ = |7⟩ and
|ψ2⟩ = |7̃⟩. The quantum implementation QFT over an n-
qubit system runs on time O(n2), thus giving it a significant
edge over the classical methods [14].

Fig. 11: An example application of QFT: this circuit calculates
QFT |7⟩ on 4 qubits.

C. Quantum Phase Estimation (QPE)

Another key element of Shor’s algorithm is the quantum
phase estimation (QPE) circuit. Let U be a quantum operator
with some eigenstate |ψ⟩ on n-qubits. Since U is unitary, all
its eigenvalues must be of modulus 1, therefore allowing us
to write (32), where θ is generally restricted to θ ∈ [0, 1) to
avoid redundancy [14].

U |ψ⟩ = e2πiθ|ψ⟩ (32)

As mentioned in section III-A3, any operator can be trans-
formed into a controlled operator, and that is what will be done
with U , resulting in operator CU , such as in Fig 12, where
the register for |ψ⟩, called the “eigenstate register” contains
n qubits, and the gate is controlled by a single-qubit register,
called “evaluation register” (for reasons that will become clear
later).

Fig. 12: Controlled application of gate U , which is controlled
by a single qubit and targets the eigenstate register.

Consider the circuit in Fig. 13, where the notation CUx

means x applications of gate CU . If we start the evaluation
register at |0⟩, we can write (33), where |ϕ⟩ is some eigenstate8

of operator U . After the application of the Hadamard gate, (33)
becomes (34). Application of the controlled gate on (34) yields
(35), which shows a remarkable property: both the value θ and

8The eigenstate notation was changed to |ψ⟩ from the previous |ψ⟩ to avoid
confusion.

11

(a) State |7⟩ - Before QFT

(b) State |7̃⟩ - After QFT

Fig. 10: Example of QFT for element |7⟩ in a 4-qubit system, which can be obtained using the circuit in Fig. 11. Each qubit
state, both before and after the QFT , is represented using separate Bloch spheres.

the number of applications of U have been encoded into the
relative phase of the evaluation qubit without changes to the
eigenstate register.

Fig. 13: Building block of QPE Circuit: Hadamard gates
followed by a controlled application of U a total of x times.

|ψ1⟩ = |0⟩|ϕ⟩ (33)

|ψ2⟩ =
1√
2
(|0⟩+ |1⟩)|ϕ⟩

=
1√
2
(|0⟩|ϕ⟩+ |1⟩|ϕ⟩)

(34)

|ψ3⟩ =
1√
2
(CUx|0⟩|ϕ⟩+ CUx|1⟩|ϕ⟩)

=
1√
2
(|0⟩|ϕ⟩+ |1⟩e2πixθ|ϕ⟩)

=
1√
2
(|0⟩+ e2πixθ|1⟩)|ϕ⟩

(35)

It is possible to generalize this circuit to one such in Fig. 14,
known as the QPE circuit, where the evaluation register has
n qubits and the eigenstate register has the necessary number
of qubits to generate the eigenstate |ϕ⟩. After applying the

several Hadamard gates, we arrive at (36). The application of
the several controlled gates is identical to what was done in
(34)-(35), thus allowing us to write (37), where N = 2n. The
form inside the parenthesis is exactly the same as (30) for the
case when |2nθ⟩ is an element of the computational basis for
the n-qubit state space. It is possible, in that case, to write
(37) as (38), from which (39) naturally follows. Performing a
measurement from the evaluation register into the n classical
bits, we find the value of 2nθ in binary, from which it is easy
to calculate θ [14].

Fig. 14: QPE Circuit, which consists of parallel Hadamard
gates on the evaluation qubits, followed by CUx gates con-
trolled by the evaluation registers and targeting the eigenstate
registers. Finally, an inverse QFT is applied to the evaluation
qubits, followed by measurements. The value of x for evalu-
ation qubit qn is x = 2n.

|ψ1⟩ =
1√
2n

(|0⟩+ |1⟩)⊗n|ϕ⟩ (36)

12

|ψ2⟩ =
1√
2n

(
0⊗

p=n−1

(|0⟩+ e2πi 2
pθ|1⟩)

)
|ϕ⟩

=
1√
2n

(
0⊗

p=n−1

(|0⟩+ e
2πi
2n 2n2pθ|1⟩)

)
|ϕ⟩

=

(
1√
N

0⊗
p=n−1

(|0⟩+ ω
(2nθ) 2p

N |1⟩)

)
|ϕ⟩

(37)

|ψ2⟩ = QFT (|2nθ⟩)|ϕ⟩ (38)

|ψ3⟩ = QFT †QFT (|2nθ⟩)|ϕ⟩
= |2nθ⟩|ϕ⟩

(39)

Of course, some hypotheses were implicit in the devel-
opment of our equations. For example, we assume that
2nθ ∈ Z+, which we shall challenge later on in this section.
Moreover, for |2nθ⟩ to be an element of the computational
basis, we need 0 ≤ θ ≤ 1 − 2−n [14]. It is possible to see,
therefore, that adding qubits to the evaluation register increases
the range of values of θ that can be effectively measured. We
can test this idea by applying the QPE circuit to the operator
Y , which has an eigenvalue e2πi

1
4 for eigenstate | + i⟩. The

circuit will be built with 2 qubits on the evaluation register,
therefore, we should measure M(|22 1

4 ⟩) = M(|1⟩) = 01 on
the classical register for all cases. This is precisely the behavior
shown in Fig. 15, which was obtained with Qiskit for 1024
runs.

Fig. 15: An example application of QPE circuit for when
2nθ ∈ Z+ - (Y, |+ i⟩). Only one value is measured.

On the other hand, it is possible that 2nθ /∈ Z+. Neverthe-
less, the algorithm can still yield the value of θ with reasonable
precision. Specifically, using an evaluation register with n
qubits, in order to obtain θ accurate to p bits with probability
1 − ϵ, we must have n = p +

⌈
log2

(
2 + 1

2ϵ

)⌉
, with ⌈.⌉ the

ceiling function [4]. The chance that we’ll obtain the closest
value possible to 2nθ when measuring is generally higher
than 40% [14]. We can illustrate this notion with an example:

suppose we use operator U = P (2π/3) =

[
1 0

0 ei
2π
3

]
,

which has eigenvalue e2πi
1
3 for eigenstate |ϕ⟩ =

[
0
1

]
= |1⟩.

Using Qiskit to run the QPE algorithm on pair (U, |1⟩) with
n = {3, 4} evaluation qubits 1024 times, we can see the
results in Fig. 16, which are also summarized TABLE I,
demonstrating the impact that the increase on the number of
qubits has on effectively running the QPE algorithm, and also
that the algorithm works even if 2nθ /∈ Z+.

Finally, the problem of how to construct the eigenstate |ϕ⟩
for the QPE algorithm has been largely ignored, but will be
taken into account in our subsequent discussion of Shor’s
algorithm.

Eval Qubits Expected Closest Measured Difference Pr[M(Closest)]
3 8

3
= 2.6̄ 0b011 = 3 12.5% 0.693

4 16
3

= 5.3̄ 0b0101 = 5 -6.25% 0.701

TABLE I: Results for QPE((P (2π/3), |1⟩)) - 1024 runs with
Qiskit

D. Shor’s Algorithm

1) Algorithm Overview: Shor’s algorithm is essentially an
order finding algorithm. We may recall the definition of the
order of an element from section II-C: the order ord(a) of an
element a in multiplicative group (G, ·) is the smallest positive
integer n such that an = 1G [6].

Taking the group (ZN ,⊗), with N a positive integer, the
order r of element a ∈ ZN such that9 gcd(a,N) = 1 is
the smallest integer value that satisfies (40). The problem of
finding r is considered hard if N is sufficiently large [12].

ar mod N = 1 (40)

The function f(x) in (41) is periodic of period r for x ∈ Z+

[4]. This function can be transformed to an analogous gate for
quantum computation. Consider a system of n qubits such
2n ≥ N , and a state |y⟩ such that y ∈ Z, 0 ≤ y < 2n,
which makes |y⟩ and element of the computational basis of
the system. We can thus create an operator U such as in (42),
where we can see that the result of the operation will also
be an element of the computational basis. For the case where
|y⟩ = |1⟩, x applications of U leads to (43), which is analogous
to (41) and shares with it the same properties, including period
r [5]. Computationally, the gate U can be made using a series
of swaps, cnots, ccnots, and X gates on the qubits [14].

f(x) = ax mod N (41)

U |y⟩ = |ay mod N⟩ (42)

Ux|1⟩ = |ax mod N⟩ (43)

9Restricting a and N to being co-primes guarantees a will have finite order
[5].

13

(a) QPE for (P (2π/3), |1⟩) with 3 evaluation qubits.

(b) QPE for (P (2π/3), |1⟩) with 4 evaluation qubits.

Fig. 16: An example application of QPE circuit for when 2nθ /∈ Z+ - (P (2π/3), |1⟩). This illustrates the case of when the
QPE circuit is not exact and how the number of evaluation qubits affects measurements.

Consider the state |us⟩ such as in (44), with s ∈ Z,
where we can use k successive applications of U |1⟩ to create
the terms |ak mod N⟩, which are themselves members of
the orthonormal computational basis, thus creating a valid
superposition. In (45), we can prove that |us⟩ are eigenstates
of U , with eigenvalues e2πi

s
r . Furthermore, in (46), we prove

that the states |us⟩ are orthonormal.

|us⟩ =
1√
r

r−1∑
k=0

e−2πi skr |ak mod N⟩ (44)

U |us⟩ = U

(
1√
r

r−1∑
k=0

e−2πi skr |ak mod N⟩

)

=
1√
r

r−1∑
k=0

e−2πi skr U |ak mod N⟩

=
1√
r

r−1∑
k=0

e−2πi skr |ak+1 mod N⟩

=
1√
r

r∑
k′=1

e−2πi
s(k′−1)

r |ak
′

mod N⟩

= e2πi
s
r

(
1√
r

r∑
k′=1

e−2πi sk
′

r |ak
′

mod N⟩

)
= e2πi

s
r |us⟩

(45)

14

⟨up|us⟩ =
1

r

r−1∑
k1=0

r−1∑
k2=0

e2πi
(pk1−sk2)

r ⟨ak1 modN |ak2 modN⟩

=
1

r

r−1∑
k=0

e2πik
(p−s)

r

=
1

r
rδps

= δps
(46)

We can see that inputting a state |us⟩ into the previously
shown QPE algorithm would allows us to discover the value
of s

r . However, since the value of r is not known a priori, it
is not possible to construct eigenstate |us⟩ for the eigenstate
register. However, something remarkable happens when we
attempt to superpose these eigenstates over a period, as in
(47): the superposition of the eigenstates in a period is equal
to the state |1⟩, which can be obtained with a simple bit-flip
in the least significant qubit of the eigenstate register.

|ϕ⟩ = 1√
r

r−1∑
s=0

|us⟩

=
1√
r

r−1∑
s=0

1√
r

r−1∑
k=0

e−2πi skr |ak mod N⟩

=
1

r

r−1∑
k=0

(
r−1∑
s=0

e−2πi skr

)
|ak mod N⟩

=
1

r

r−1∑
k=0

rδ0k|ak mod N⟩

= |a0 mod N⟩
= |1⟩

(47)

The power of this manipulation can be seen when analyzing
the circuit on Fig. 17, there the previous QPE circuit has been
condensed into a single block. The circuit in Fig. 17 has n =
⌈log2N⌉ qubits in the eigenstate register in order to ensure
all integers from 0 to N−1 are elements of the computational
basis for the register [5]. As for the evaluation register, it has
t qubits, with N2 ≤ 2t < 2N2, for reasons that will become
more apparent later on [5].

From (47), it is possible to write (48) for the states in Fig.
17. After executing the QPE circuit, which distributes linearly
over the superposition of the eigenstates, we arrive at (49).

Fig. 17: A circuit to run Shor’s order finding algorithm. It is
built on top of the QPE circuit and makes use of the linearity
principle by superposing eigenstates.

|ψ1⟩ = |0⟩⊗t|1⟩n

= |0⟩⊗t 1√
r

r−1∑
s=0

|us⟩n

=
1√
r

(
r−1∑
s=0

|0⟩⊗t|us⟩n

) (48)

|ψ2⟩ =
1√
r

(
r−1∑
s=0

QPE(|0⟩⊗t|us⟩n)

)

=
1√
r

r−1∑
s=0

|2t s
r
⟩t|us⟩n

(49)

By performing a measurement on the t evaluation registers,
we can find the value of order r. In the case where 2t

r ∈ Z,
all elements |s 2

t

r ⟩ are in the computational basis of the
evaluation register, thus only these states will be measured,
in very marked fashion. On the other hand, similarly to what
happens with the QPE algorithm, when 2t

r /∈ Z measurements
will be distributed in an oscillatory fashion, with peaks in
basis elements which are the closest to s 2

t

r . We can see this
behavior in the example of Fig. 18, where N = 13 and
a = {5, 6}, which have orders 4 and 12 respectively. As
expected, the case where a = 5, r = 4 yields measurements
precisely on {0, 64, 128, 192}. When a = 6, r = 12, however,
measurements will be dispersed, but with higher counts on
integers closest to {0, 21.3̄, 42.6̄, ...}.

Even when the measurements are not in exact multiples,
such as in Fig. 18b, it is still possible to estimate the order
r of a by using continued fraction expansions (CFE). In the
case where N2 ≤ 2t < 2N2, there is only one fraction with
denominator N that is within 1

N2 of v
2t , where v is an output

measurement of the algorithm. When r and s are co-prime, the
denominator of said fraction is equal to r [5]. In the example
of Fig. 18b, suppose the algorithm has yielded v = 21. The
CFE outputs 1

12 , resulting in r = 12, which is precisely the
value desired. In can be quickly verified if the denominator

15

(a) a = 5

(b) a = 6

Fig. 18: Example of Shor’s algorithm - N = 13.

outputted by the continued fraction expansion is in fact the
order of a. Running Shor’s algorithm multiple times increases
the chance of correctly estimating r [4].

2) Shor Against RSA: Shor’s order finding algorithm can
be used to effectively factor an integer N as per Algorithm 1,
thus breaking the RSA cryptosystem [5].

To compare Algorithm 1 with the RSA cryptosystem, we
can assume that N is already in non-trivial, semi-prime format.
By picking a random a, it is possible we might “get lucky”
and find a factor of N . Even though this is rare, the algorithm
covers this case. Much more likely is the case where a shares
no factors with N , thus meaning we can use Shor’s algorithm
as described previously to efficiently find the order of a in
(ZN ,⊗). From the definition of the order of a, we get (50) for
the case when r is even, with k being some integer. If neither
term on the left hand side of (50) is a multiple of N , both
terms share nontrivial factors with N . Upon obtaining p and q
from the algorithm, it can be quickly verified if N mod p = 0
and N mod q = 0. If not, we can run the algorithm as many
times as are needed.

Algorithm 1: Shor’s algorithm against RSA

1 Function Shor RSA(N)
2 a = Random integer between 2 and N − 1
3 if gcd(a,N) == 1 then
4 r = Order of a in (ZN ,⊗) from Shor-CFE
5 if r is even then
6 p = gcd(a

r
2 + 1, N)

7 q = gcd(a
r
2 − 1, N)

8 end
9 end

10 else
11 return a
12 end
13 end

ar ≡ 1 (mod N) → (a
r
2 + 1)× (a

r
2 − 1) = k ×N (50)

Finally, it is fundamental to mention that Algorithm 1 runs
polynomially on the size of N, that is on O(poly(logN)),

16

which is significantly faster than any existing classical algo-
rithm with the same end [17], meaning its implementation
would break the RSA cryptosystem.

3) Shor Against ElGamal: Shor’s period finding algorithm
can also be used effectively against the ElGamal cryptosystem,
albeit with some modifications.

In fact, both the integer factorization and the discrete loga-
rithm problem can be formulated as hidden subgroup problems
on Abelian groups, which can be solved efficiently by quantum
computers [4]. Although the proof of this statement and its
adaptability to discrete logarithm are beyond the scope of this
work, we shall enumerate the steps that lead to this conclusion.

Hidden subgroup problem (HSP): let G = (G, ·) be a group.
If a subgroub H < G can be implicitly defined by a function
f on G such that f is constant on every coset of H but distinct
for each coset, the problem of finding a generating set of H is
called the hidden subgroup problem [6]. When the group G is
Abelian, this problem can be solved by a quantum computer
using O(poly(log ord(G))) operations and one call to a black-
box oracle, thus meaning this problem is solved in a reasonable
time [4].

The discrete logarithm as a hidden subgroup problem: given
group G = (Z∗

p,⊗) where p is a prime, a generator g ∈ G
and an arbitrary element y ∈ G, the discrete logarithm problem
consists in finding x ∈ G such that gx = y. If we consider
the function f : G × G → G such that f(a, b) = g−ayb,
the set of elements such that f(a, b) = 1 is the hidden
subgroup H of G × G of tuples of the form (kx, k). By
solving the HSP for H , the element (x, 1) can be computed,
thus solving the discrete logarithm problem by yielding x [5].
This formulation is effective against other kinds of discrete
logarithm formulations, including elliptic curves, which are
also widely used in modern crypography [18].

4) Difficulties in Implementing Shor’s Algorithm: While
Shor’s algorithm (both in its original formulation and general
HSP adaptations) can be used to undermine modern cryptog-
raphy systems, its practical implementation is still far from
complete. Considering RSA factoring, for example, so far only
the factorization of very small numbers has been achieved with
quantum computers running Shor’s algorithm [19]. The main
problems with effectively running Shor’s algorithm consist in
1) providing a sufficient number of qubits [4]; and 2) avoiding
decoherence during the execution of the algorithm [20]. Most
current experimental verifications of Shor’s algorithm have
actually relied upon previous knowledge of the answer [19].

It is worth mentioning that there are approaches other than
Shor’s algorithm that are more efficient when it comes to
breaking certain encryption patterns. As an example, [21] has
managed to achieve factorization of 56153 with only 4 qubits,
which is a remarkable feat. On the whole, however, quantum
algorithms still under-perform most classical algorithms, and
some time is still needed for quantum computers to pose a
serious threat to modern cryptography standards.

IV. POST-QUANTUM KEY EXCHANGES

A. Principles of Quantum Key Distribution

Even though quantum computers are not advanced enough
to pose a threat to communications security, that may be
the case in the near future. Therefore, several systems have
been proposed which ensure secrecy in the post-quantum
world. One option (though not the only one) is to use the
principles of quantum mechanics in order to securely distribute
cryptographic keys. These methods, which are collectively
called “quantum key distribution” (QKD), rely both on the
probabilistic nature of quantum physics and on the no cloning
theorem. The first method of this type to be proposed was the
BB84 protocol, which still serves as a kind of “blueprint” for
QKD [5].

B. BB84 Protocol

The BB84 protocol was proposed as a means for two
parties, named Alice and Bob, to exchange a cryptographic
key through a channel where eavesdropper Eve can intercept
and read information. This is not a cryptosystem, but just
a means of transmitting a key, which can then be used to
establish secure communications between the parties via some
symmetric key system such as AES, for example.

The procedure is as follows [5]:
1) Alice randomly generates n-bit key k = {0, 1}n;
2) Alice randomly generates n-bit string q = {0, 1}n;
3) Alice encodes (k, q) as |ψ⟩, where |ψ⟩ is an n-qubit state

as expressed in (51) and using the encoding presented
in (52). As (52) shows, the bit qi determines the basis
of the encoding while the bit ki determines the value of
the 1-qubit state in the basis chosen;

4) Alice sends state |ψ⟩ over the network to Bob;
5) Bob randomly generates string q′ = {0, 1}n;
6) Bob calculates string k′ as shown in (53), which means

that the value of q′i determines if Bob will use basis
{|0⟩, |1⟩} or {|+⟩, |−⟩} for measuring the qubits sent by
Alice. Once the measurement is made, the bit assigned
to k′i is straightforward from the encoding in (52). If
qi = q′i, both Alice and Bob must have the same key-bit
ki = k′i;

7) Alice and Bob compare the values of qi and q′i over
the network. If qi = q′i, they keep the bits ki and k′i. If
qi ̸= q′i, they discard the bits ki and k′i. After comparing
these strings and discarding all diverging bits, we shall
have for the reduced keys k̄ and k̄′ that k̄ = k̄′.

|ψ⟩ =
0⊗

i=n−1

|ψi⟩ =
0⊗

i=n−1

|ψkiqi⟩ (51)

|ψ00⟩ = |0⟩
|ψ10⟩ = |1⟩
|ψ01⟩ = |+⟩
|ψ11⟩ = |−⟩

(52)

k′i = δ0q′i⟨1|ψi⟩+ δ1q′i⟨−|ψi⟩ (53)

17

We must have k̄ = k̄′ from the fact that if Alice and
Bob used the same basis for encoding and measurement
respectively, then they must have the same key-bits, with all
others being discarded [5].

As for security, Eve can intercept both the state |ψ⟩ and
the values of q and q′ during the comparison phase. If Eve
measures the values of |ψi⟩, she will have a 50% chance of
choosing the same basis as Alice, meaning that for long keys
she will know 50% of k, which she can verify by intercepting
the values of q sent for comparison. However, Bob also has to
choose the same basis in order for the bit to kept in the reduced
key, which Eve can also verify by looking at q′. The chance of
Eve having chosen the same basis as Alice and Bob is 50%,
meaning for long keys she will know approximately 50% of k̄.
This value is independent of the computational power possesed
by Eve, meaning quantum computers are useless to improve
information collection [5].

While this attack by Eve poses a security risk, because of the
no-cloning theorem Eve’s measurement of the states |ψ⟩ will
necessarily cause disruption if she has chosen the wrong basis,
which will happen approximately 50% of the time. Therefore,
it might so happen that the values of k̄i ̸= k̄′i for some bit
because of Eve’s disruption. For this disruption to happen,
Eve must have used a different basis than Alice and Bob,
which happens with probability 50% in the context of the
reduced key, and Bob’s measurement from this qubit must
result in a different encoding, which happens with probability
50%, meaning that for each bit i in the reduced key, there is
probability 25% that k̄i ̸= k̄′i. If Alice and Bob sacrifice some
bits of the reduced key by comparing them over the network
and them discarding them, the comparison of 9 bits suffice to
detect tampering with over 90% chance, with tampering being
recognized by having k̄i ̸= k̄′i. By detecting tampering, Alice
and Bob can simply move to a different channel [5].

For all its advantages, the BB84 has some liabilities which
render it impractical, such as vulnerabilities to man-in-the-
middle attacks [22], decoherence of the quantum states and
noise over long distance transmission [5], among others [23].
For these reasons, BB84 has been generally superseded by
some of its spin-offs, such as E91 and B92, but these too
suffer from their own problems [5], meaning QKD still has to
surmount many challenges before being commercially imple-
mentable.

V. CONCLUSION

As has been shown, Shor’s order finding algorithm, which
is an application of the quantum phase estimation circuit,
could theoretically be successfully employed against both the
RSA and ElGamal cryptosystems, undermining the security
of modern communications. In practice, however, some the
difficulties involved in managing multiple-qubit systems mean
that it will still take some time before this type of attack poses
an imminent threat. In order to hedge this eventual scenario,
schemes that can potentially provide secrecy in the post-
quantum computers world are already being developed, one
such example being the BB84 protocol. Such schemes, despite

their shortcomings, can be improved upon before the use of
quantum computers become widespread. In summary, as was
the case in the past, the constant race between cryptography
and cryptanalysis is still very much a reality.

REFERENCES

[1] David Kahn. The Codebreakers: The comprehensive
history of secret communication from ancient times to
the internet. Simon and Schuster, 1996.

[2] Claude E Shannon. “Communication theory of secrecy
systems”. In: The Bell system technical journal 28.4
(1949), pp. 656–715.

[3] Douglas R Stinson. Cryptography: theory and practice.
Chapman and Hall/CRC, 2005.

[4] Michael A Nielsen and Isaac Chuang. Quantum com-
putation and quantum information. 2002.

[5] Eleanor G Rieffel and Wolfgang H Polak. Quantum
computing: A gentle introduction. MIT Press, 2011.

[6] Kenneth H Rosen. Handbook of discrete and combina-
torial mathematics. CRC press, 2017.

[7] Arjen K. Lenstra. “Integer Factoring”. In: Encyclopedia
of Cryptography and Security. Ed. by Henk C. A. van
Tilborg and Sushil Jajodia. Boston, MA: Springer US,
2011, pp. 611–618. ISBN: 978-1-4419-5906-5. DOI: 10.
1007/978-1-4419-5906-5 455. URL: https://doi.org/10.
1007/978-1-4419-5906-5 455.

[8] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic,
et al. “Comparing the difficulty of factorization and
discrete logarithm: a 240-digit experiment”. In: Annual
International Cryptology Conference. Springer. 2020,
pp. 62–91.

[9] Shafi Goldwasser and Silvio Micali. “Probabilistic en-
cryption & how to play mental poker keeping secret all
partial information”. In: Proceedings of the fourteenth
annual ACM symposium on Theory of computing. 1982,
pp. 365–377.

[10] Yongge Wang. “Public key cryptography standards:
Pkcs”. In: arXiv preprint arXiv:1207.5446 (2012).

[11] OEIS Foundation Inc. Entry A033948 in the on-line
encyclopedia of integer sequences. 2022. URL: https :
//oeis.org/A033948.

[12] Alfred J Menezes, Paul C Van Oorschot, and Scott A
Vanstone. Handbook of applied cryptography. CRC
press, 2018.

[13] N David Mermin. Quantum computer science: an in-
troduction. Cambridge University Press, 2007.

[14] MD SAJID ANIS, Abby-Mitchell, Héctor Abraham,
et al. Qiskit: An Open-source Framework for Quantum
Computing. 2021. DOI: 10.5281/zenodo.2573505.

[15] Xiao-Qi Zhou, Timothy C Ralph, Pruet Kalasuwan,
et al. “Adding control to arbitrary unknown quantum
operations”. In: Nature communications 2.1 (2011),
pp. 1–8.

[16] Charles Van Loan. Computational frameworks for the
fast Fourier transform. SIAM, 1992.

18

https://doi.org/10.1007/978-1-4419-5906-5_455
https://doi.org/10.1007/978-1-4419-5906-5_455
https://doi.org/10.1007/978-1-4419-5906-5_455
https://doi.org/10.1007/978-1-4419-5906-5_455
https://oeis.org/A033948
https://oeis.org/A033948
https://doi.org/10.5281/zenodo.2573505

[17] David Beckman, Amalavoyal N Chari, Srikrishna Dev-
abhaktuni, et al. “Efficient networks for quantum fac-
toring”. In: Physical Review A 54.2 (1996), p. 1034.

[18] John Proos and Christof Zalka. “Shor’s discrete loga-
rithm quantum algorithm for elliptic curves”. In: arXiv
preprint quant-ph/0301141 (2003).

[19] Unathi Skosana and Mark Tame. “Demonstration of
Shor’s factoring algorithm for N = 21 on IBM quantum
processors”. In: Scientific Reports 11.1 (2021), pp. 1–
12.

[20] GP Berman, DI Kamenev, and VI Tsifrinovich. “Collec-
tive decoherence of the superpositional entangled states
in the quantum Shor algorithm”. In: Physical Review A
71.3 (2005), p. 032346.

[21] Nikesh S Dattani and Nathaniel Bryans. “Quantum
factorization of 56153 with only 4 qubits”. In: arXiv
preprint arXiv:1411.6758 (2014).

[22] Jinxiang Huang, Yong Wang, Huadeng Wang, et al.
“Man-in-the-middle attack on BB84 protocol and its de-
fence”. In: 2009 2nd IEEE International Conference on
Computer Science and Information Technology. 2009,
pp. 438–439. DOI: 10.1109/ICCSIT.2009.5234678.

[23] Rahul Aggarwal, Heeren Sharma, and Deepak Gupta.
“Analysis of various attacks over BB84 quantum key
distribution protocol”. In: International Journal of Com-
puter Applications 20.8 (2011), pp. 28–31.

19

https://doi.org/10.1109/ICCSIT.2009.5234678

	Introduction
	Classical Public-Key Cryptography Schemes
	Overview of Classical Cryptosystems
	RSA Cryptosystem
	ElGamal Cryptosystem

	Quantum Computing and its Impact on Cryptography
	Fundamentals of Quantum Computing
	Single Qubit Systems and their Representations
	Multiple Qubit Systems
	Operators and Quantum Ports
	Circuits

	Quantum Fourier Transform (QFT)
	Quantum Phase Estimation (QPE)
	Shor's Algorithm
	Algorithm Overview
	Shor Against RSA
	Shor Against ElGamal
	Difficulties in Implementing Shor's Algorithm

	Post-Quantum Key Exchanges
	Principles of Quantum Key Distribution
	BB84 Protocol

	Conclusion

