
Horizontal Collision Avoidance Resolutions for
Unmanned Quadcopters Using ACAS Xu

Leonardo Mouta Pereira Pinheiro∗, Jean-Baptiste Chaudron†

Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, FRANCE
∗Email: leonardo.MOUTA-PEREIRA-PINHEIRO@student.isae-supaero.fr

†Email: jean-baptiste.CHAUDRON@isae-supaero.fr

Abstract—ACAS X is a probabilistic-based collision avoidance
system which aims to replace the current standard ACAS II. The
original concept has been branched into several variants, includ-
ing ACAS Xu, intended for unmanned aerial systems. Modeling
the dynamics of an encounter between two quadcopters via a
Markov Decision Process, whose optimal policy was calculated
through value iteration, results in an acceptable number of near
midair collisions and alerts, thus showing that ACAS Xu could
be potentially used in quadcopter drones, an application thus far
neglected. Possible improvements that could bring the simulation
closer to real life scenarios were then detailed for use in future
research.

I. INTRODUCTION

This work concerns ACAS X technologies and consists of
two main lines. In the first one, the general formulation of
ACAS X, its current state of the art, its advantages when
compared to legacy ACAS II, and the branching of the original
concept into ACAS Xa/Xu are briefly described. Afterwards,
the article focus on the problem of adapting standard ACAS
Xu logic for quadcopter use, which behaves differently than
other aircraft currently covered by this system.

Section II contains a brief description of how the general
ACAS X concept works. Section III explores some particu-
larities of ACAS Xu - intended for unmanned aerial systems
(UAS) - when compared to the baseline concept. Section IV
pertains to the specific problem of issuing resolution advisories
(RAs) in the horizontal plane for UAS - as opposed to the
traditionally adopted climb/descend instructions. Section V
details the procedures involved in modeling and simulating
ACAS Xu logic for quadcopters. Sections VI and VII discuss
the results for two different encounter scenarios, respectively
aircraft with zero and non-zero horizontal speeds. Section VIII
details some possible improvements to the model used in this
article in order to better account for real life operation. Finally,
Section IX concludes this paper with some final remarks about
the feasibility of implementing ACAS Xu logic in quadcopters.

II. CONTEXT AND STATE OF THE ART

As was stated by [1], current ACAS II technology, although
largely successful, is starting to show some limitations, such as
its deterministic logic, unnecessary advisories, heavy depen-
dence on transponders and its bad response to non-compliant

aircraft (which became clear after the Überlingen collision in
2002).

In order to deal with these shortcomings, ACAS X - a new
airborne collision avoidance (CA) paradigm - is being devel-
oped, which relies on probabilistic modeling of aircraft flight
and use of equipment other than the traditional transponder
(such as GPS, for example) [1].

Grosso modo, ACAS X logic works as follows [2]: in offline
development, aircraft movement is modeled via a Markov
decision process (MDP). Through the use of a computing
technique called dynamic programming, the best course of
action - based upon the MDP - is transformed into a numerical
lookup table. The reason for using dynamic programming -
instead of other techniques - as well as the baseline MDP
formulation for ACAS X has been put forth by [3]. Also,
solving an MDP by means of dynamic programming is a well
known problem, with the detailed process described in works
such as [4]. On the other hand, during real-time operations the
measurements obtained from sensors available to the aircraft
are used to generate a state distribution, which is compared
against the lookup table. If it is determined that the aircraft is
in a route that will result in a violation of its safety volume,
the system issues a resolution advisory (RA) to the pilot.

That said, some particularities arise when implementing
ACAS X for each type of aircraft, resulting in a branching
of the original concept. ACAS Xa, for example, is the gen-
eral purpose implementation, to be installed in commercial
airplanes. Another existing variant is ACAS Xu, for example,
which deals with unmanned aerial systems (UAS). There are
other specific implementations, but they are not relevant for
this work, which shall limit itself to the contrast between
ACAS Xa and ACAS Xu.

III. ACAS XA VS. ACAS XU

In terms of specifications, some points of difference in
which ACAS Xu departs from baseline ACAS Xa are [5]:
• The need to incorporate non-cooperative traffic. ACAS

Xa deals exclusively with aircraft carrying cooperative
sensors (transponders, ADS-B, etc.). Since ACAS Xu will
need to sense non-cooperative traffic, it will also need
to include non-cooperative sensors in its design (such as
radar or even optical mounts);

• Automatic pilot overrides. In ACAS Xu logic, the autopi-
lot may take over command of the aircraft if the remote
pilot fails to heed an issued RA;

• Horizontal resolutions. In order to avoid collisions, ACAS
Xa only issues resolutions in the vertical plane (climb,
descend). When using ACAS Xu, horizontal resolutions
(turn left/right) are sometimes better to avoid collisions.

Economically, [5] also states that the delay in integrating
unmanned aircraft into the general airspace costs an estimate
10 billion dollars per year. The same reference warns that this
value is probably overestimated, but it offers some perspective
on the market size of ACAS Xu regardless. Small drones in
particular - such as civilian-operated quadcopters - could also
be integrated into the economy, thus generating significant
revenue, but not before their operational safety is ensured.

The theoretical groundwork has been laid out by studies
such as [6], which covers the performance of ACAS Xu
algorithms. Furthermore, proof-of-concept of ACAS Xu logic
has already been established by [7], meaning the practical
feasibility of the system has already been established.

Thus, it becomes clear that ACAS Xu technology is a field
with a lot of potential. Of the issues mentioned above, this
work focuses on the problem of horizontal RAs.

IV. HORIZONTAL RESOLUTIONS FOR COLLISION
AVOIDANCE

As explained in Section III, ACAS Xa logic - when con-
fronted with a collision avoidance - only issues RAs on the
vertical plane, that is level-off, climb or descend instructions,
with varying degrees of intensity for the last two. The work
done in [3], for example, explores the results of issuing
climb and descend instructions of ±1500 ft/min - with two
different acceleration options - and ±2500 ft/min.

ACAS Xu also issues horizontal RAs, meaning ACAS Xu
can instruct the aircraft to turn left/right instead of climb-
ing/descending if it is a better option for avoiding collisions.

Evidently, the first thing to determine is when to choose
between vertical or horizontal conflict resolution. A study on
that subject has been published in [8].

The study in [8] (along with many others), however, as-
sumes a turn model for the UAS similar to that of airplanes,
thus modeling horizontal advisories as “turn x°/s left/right”.
While that may be a reasonable description for larger UAS,
smaller ones - such as quadcopters - do not behave like
that. Instead, a quadcopter generally changes its direction by
banking, thus creating a lateral speed. The difference between
large UAS and quadcopter movement is illustrated in Fig. 1.

Fig. 1: While a plane or large UAS changes its heading by
gradually altering the angle of its speed, a quadcopter usually
develops a lateral speed to change its trajectory

What this means is that the previous research models for
studying horizontal resolutions in ACAS Xu logic have to be
revisited if they are to be adapted for quadcopter operation.

V. PROBLEM FORMULATION AND MDP MODELING

A qualitative description of the problem of horizontal sep-
aration is as follows: suppose two aircraft are moving in such
a manner that they will have the same altitude after a certain
time τ . Suppose also that a near midair collision (NMAC)
occurs if their horizontal separation is smaller than a certain
critical value ρcrit when they are at the same altitude. Given
the dynamics of the aircraft on the horizontal plane, what
measures can be taken to avoid an NMAC?

A geometrical representation of this problem, along with
the relevant quantities involved, was put forth by [8], which
is illustrated in Fig. 2.

Fig. 2: Geometrical description of horizontal separation prob-
lem. Axes x and y are constructed based on ~v0

In order to model the problem as a Markov Decision
Process, it is necessary to define the state variables, which
can be derived from Fig. 2 and are registered in I. Since an
MDP works with discrete states, these state variables will need
to be discretized. Any state s will thus be defined by the tuple
s = (ρ, θ, ψ, v0, v1, τ, aprev).

TABLE I: State variables used in MDP formulation

Variable Description Commentary
ρ Range to intruder
θ Relative intruder bearing Counterclockwise
ψ Relative intruder heading Counterclockwise
v0 Owner ground speed
v1 Intruder ground speed
τ Time to loss of vertical separation

aprev State of previously issued advisory Already discrete

The possible actions, which defines the action state, are
listed in TABLE II. In order to keep the lookup table as small
as possible, no strengthenings or reversals are possible.

TABLE II: Possible actions at each state

Action Description
coc No maneuvering necessary
left Speed vlat oriented towards positive x

right Speed vlat oriented towards negative x

For this article, the value of vlat is taken to be 1 m/s. This is
not based on any real quadcopter, which can sometimes reach
up to 15 m/s in lateral speed, but rather a small, realistic
value that is easy to implement and control in the event of a
physical simulation.

As for the rewards at each state s, the values were defined
in an ad hoc manner and are analogous to the ones used in
[9]. These reward values are listed in TABLE III. The collision
radius ρcrit was assumed equal to equal 1.5 m. This value is
a bit high given typical quadcopter dimensions, but is useful
for visualization purposes.

TABLE III: Reward values for each state s

Situation Reward Condition
NMAC -1 When τ = 0 and ρ ≤ ρcrit
Alert -0.01 When aprev = left or aprev = right
Clear 0.0001 When aprev = coc

Since the size of the final lookup table is an important
constraint, for the storage space in quadcopters is usually
very limited, it is better to choose different discretization
schemes for the state variables based on the expected type of
encounter. For that, two situations will be studied, in both of
them the intruder also being a small quadcopter drone. These
two situations are:
• There are no horizontal speeds involved. In other words,
v0 = v1 = 0. This situation serves as a benchmark:
since almost all ACAS X algorithms are made by MIT
Lincoln Lab and are unavailable to the general public,
it will be necessary to develop most tools from scratch.
Thus a simple encounter will serve as a benchmark to
ascertain the soundness of the logic implemented, for it
is analogous to the simplest “head-on collision” described
by [3] and can be qualitatively compared to the results
in [9].

• The intruder is also a small quadcopter drone but the ini-
tial speeds v0 and v1 are non-zero. This is a more general
case that will serve to better analyze the particularities of

quadcopter encounters. Since there will be more states in-
volved, this scenario is also more computationally costly.

It is not essential to separate these cases for, as shall be
seen, the general equations involved apply to both of them.
The advantages in doing so, however, consist in having a
more clear understanding of the conditions involved, having a
“quicker” situation (the first scenario) which can be run and
changed without much work, and keeping the number of states
involved small, both to generate small lookup tables and to
keep dynamic programming as an effective tool for solving
MDPs (for an indiscriminately large state space would require
other solving methods ir order to be processed in a reasonable
amount of time).

Regardless of the encounter type studied, which will influ-
ence only the discretization of the variables, there are some
hypotheses common to both scenarios, namely:

• The collision avoidance system has perfect state informa-
tion. In other words, sensors are not involved and there
is no noise when determining the state. Relaxation of
this hypothesis would transform the MDP into a Partially
Observable Markov Decision Process (POMDP).

• The intruder aircraft is not equipped with ACAS and will
not have its behavior altered during the course of the
encounter. Since quadcopters are not usually equipped
with ACAS, this is a reasonable assumption.

• Decisions will be taken at time intervals ∆t = 1 s.
While this is quite a large interval for quadcopters, this
is currently the standard for ACAS X.

• If a “left”/“right” action has been been issued and
aprev = coc, it takes ∆t time for the owner aircraft
to respond, after which the lateral speed immediately
assumes value vlat. Clear of conflict (coc) actions are
executed immediately and all lateral speeds are instantly
nullified.

Regarding the dynamic model, the variables ψ, v0 and v1
are assumed to remain constant throughout the encounter. As
a consequence, updating ρ and θ becomes a simple 2D kine-
matics problem based on the other parameters: after passing
the system to Cartesian coordinates, it is easy to determine the
new position of the intruder relative to the owner. Returning
these coordinates to a polar frame yields the new ρ′ and θ′.
Thus, given a state s and action a, the new position x′ after
time ∆t is given by:

x′ =

ρ′

θ′

ψ′

v′0
v′1
τ ′

a′prev

=

||(xi(s, vlat, a,∆t), yi(s, vlat, a,∆t))||
argθ (xi(s, vlat, a,∆t), yi(s, vlat, a,∆t))

ψ
v0
v1

τ −∆t
a

(1)

With:

xi(s, vlat, a,∆t) = ρ sin θ + (v1 sinψ − δ(a, aprev)vlat)∆t
(2)

yi(s, vlat, a,∆t) = ρ cos θ + (v1 cosψ − v0)∆t (3)

δ(a, aprev) =

1, if a 6= coc and aprev = left
0, if a = coc or aprev = coc
−1, if a 6= coc and aprev = right

(4)

It is worth noting that x′ is not the new state s′. While
variables ψ′, v′0, v′1 and a′pref will, because of the very
construction of the modeling, fall within the values stipulated
by discretization; and while the correct combination of a
discretization scheme for τ and ∆t will also ensure that τ ′

also falls within the permitted values, the results yielded by
the operations over xi(s, vlat, a,∆t) and yi(s, vlat, a,∆t) may
very well result in values of ρ′ and θ′ that fall outside the
discretization scheme.

It is thus necessary to create a certain “mapping” of the
continuous variable x′ to the discrete states s′. The method
chosen is to assign a certain probability p(s′|x′) that x′ will be
mapped to s′ based on the coefficients involved in the bilinear
interpolation of ρ′ and θ′. This procedure is detailed and used
with good results in [10].

The process goes as follows: suppose ρ′ falls between two
points belonging to the possible discrete values ρ1 and ρ2,
with ρ1 ≤ ρ′ < ρ1. The probability p(ρ1|ρ′) that ρ′ is mapped
to state variable ρ1 is:

p(ρ1|ρ′) =
ρ2 − ρ′

ρ2 − ρ1
(5)

In an analogous manner:

p(ρ2|ρ′) =
ρ′ − ρ1
ρ2 − ρ1

(6)

The exact same methodology can be applied to θ′. Suppose
x′ is surrounded by 4 states, as shown in Fig. 3. Assuming
independence between the mapping of ρ′ and θ′ to the possible
states, the mapping probabilities are given by equation 7.

Fig. 3: Position x′ (continuous on ρ′ and θ′) can be mapped
to the surrounding states s′1 to s′4. Probabilities are based on
the coefficients of bilinear interpolation.

p(s′1|x′) = p(ρ1|ρ′)p(θ1|θ′)
p(s′2|x′) = p(ρ2|ρ′)p(θ1|θ′)
p(s′3|x′) = p(ρ1|ρ′)p(θ2|θ′)
p(s′4|x′) = p(ρ2|ρ′)p(θ2|θ′)

(7)

After this discussion, and combining it with the theoretical
methodology put forth by [4], it is now possible to fully
describe the situation as a Markov Decision Process. To sum
up all that has been discussed, the discretization of the state
variables in TABLE I results in the grid points upon which the
state space S is built. For each state s ∈ S, the possible action
space A and the reward space R are defined in TABLES II
and III respectively. Furthermore, under the hypothesis that
the reward function depends only on the state s, TABLE III
directly leads to the definition of the reward function R(s).

Equations 1-7 lead to the definition of the state transi-
tion function T (s′|s, a) = p(s′|x′), with x′ deterministically
defined by equations 1-4, thus guaranteeing all necessary
parameters for fully describing the MDP.

Based on a policy π(s), assumed to be stationary and which
specifies which action a should be taken at stage s, and a value
function Uπ(s), which is the expected utility of executing
policy π at state s, the objective of the MDP is to find an
optimal policy π∗(s) which maximizes the expected utility
for all states. It is this optimal policy that will be ultimately
converted to the lookup table. It can be shown that the expected
reward U∗(s) for each state when following an optimal policy
satisfies the Bellman equation:

U∗(s) = R(s) + max
a

∑
s′

T (s′|s, a)U∗(s′) (8)

It is worth noting that this equation is different from its
original formulation, which includes a discount value γ, but
is identical to the one used in [9]. This adaptation is made
because the MDP created deals with a finite horizon. In real
applications, however, it could be a good idea to reintroduce
the discount factor in order to prioritize the present over the
future, thus balancing any propagated errors.

To find the value of U∗ the method of value iteration, an
application of dynamic programming, can be used. This is an
iterative method that consists in updating the the value of U(s)
with each passage until convergence. The lack of a discount
factor would imply the need of exact convergence. In practice,
since computers tend to introduce error when dealing with
large floating point representations, the values were rounded
to the 9th decimal place. This rounding was found by trial
an error, based upon checking if the optimal policy found
were nonsensical or not. Implementation of this value iteration
method is shown in Algorithm 1.

Algorithm 1: Value iteration in order to find U∗(s)

k ← 0;
U0(s)← 0, for all states s;
δ ← 1;
while δ 6= 0 do

Uk+1(s)←
R(s) + maxa[round(

∑
s′ T (s′|s, a)Uk(s′), 9)],

for all states s;
k ← k + 1;
δ ← maxs ||Uk(s)− Uk−1(s)|| ;

end
return Uk

From the value of U∗(s), it is straightforward to obtain the
optimal policy π∗(s) (again removing the discount factor) [4]:

π∗(s) = arg max
a

(∑
s′

T (s′|s, a)U∗(s′)

)
(9)

The simulation of encounters to evaluate the optimal policy
works as follows: one million encounters will be generated
such that the starting state has components τ = τmax, aprev =
coc and variables ρ, θ, ψ, v0 and v1 are chosen from a uniform
distribution over their permitted values. This is similar to the
methodology described in [9].

After the definition of the starting state, the simulation will
follow the action proposed by the policy and will transition
to next state s′ based on the probabilities in the transition
model T (s′|s, a) until the simulation reaches a state with
τ = 0. During the simulation, the number of alerts issued is
counted and the program will verify if the end state represents
a violation of the safety volume. Because most values chosen
are random, this will enable the exploration of different types
of encounters, which in turn allows for a good assessment of
the optimal policy.

VI. FIRST ENCOUNTER SCENARIO: ZERO HORIZONTAL
SPEEDS

As discussed in the previous section, the first example
consists of a simple scenario where no horizontal speeds are
involved. By setting setting the horizontal speeds v0 = v1 = 0,
it is also possible to also set ψ = 0, thus greatly reducing the
state space, which allows for a fast simulation that can be
quickly changed.

The discretization scheme for this scenario is listed in
TABLE IV, resulting in a total of 16,848 states, which can
be computed fairly quickly.

TABLE IV: Discretization of state variables for scenario 1

Variable Grid Points
ρ 0, 0.2, 0.4, ..., 5 m
θ 0, 10, 20, ..., 350 degrees
ψ 0 degrees
v0 0 m/s
v1 0 m/s
τ 0, 1, ..., 5 s

aprev Already discrete

The optimal policy obtained after running the MDP sim-
ulation is illustrated in Fig. 4. Evidently, since the problem
is intrinsically three-dimensional in (ρ, θ, τ), the results
were plotted considering slices of τ . Also, it is assumed that
aprev = coc, in other words that there were no previously
issued actions. Also, since the plots at time slices τ = 4 s
and τ = 5 s do not bring a lot of information, they were not
shown in Fig. 4

At first sight, it would appear that no information can be
gained from the empty plot in Fig. 4a, but this is incorrect.
In fact, it gives vital insight into the reasoning of the MDP
formulation: since a turn action takes one second to be applied,
if detection occurs at τ = 1 s there is no possibility to avoid
the collision if ρ ≤ ρcrit, hence the empty plot, for it offers a
higher reward not to issue an alert at all.

As for Fig. 4b, it is possible to see a “hole” inside the action
points. This is an analogous result to the conclusions reached
concerning Fig. 4a: any action issued at τ = 2 s would only
be implemented at τ = 1 s, thus giving the drone only a
second to avoid the collision. For the chosen values of vlat
and ρcrit, this time might not suffice to avoid the collision,
hence the empty region. As for the action points, the symmetry
observed is expected and is similar to the results obtained in
[9].

Finally, Fig. 4c shows that collision can be avoided in the
region neglected by Fig. 4b if the threat is detected earlier.
The system, however, chooses not to issue warnings at points
farther from the center at this time, preferring to deal with
them when the time to collision is lower. Also in Fig. 4c it is
possible to notice that the previous symmetry has been lost.
This is due to programming reasons: when the expected value
derived from two different actions are the same, the program
tends to prioritize the “bank left” action simply because it is
evaluated first.

As for the simulation to ascertain the efficiency of the
policy, total NMACs and alerts are listed in TABLE V. While
the number of alerts is high when compared to works such
as [9], the number of NMACs equaling zero certainly raises
some questions. Of course, this result could be brushed aside
based on the simplicity of the model, the scenario and the
simulation, and should not be taken at face value. However it
at least serves to show that the methodology implemented has
some potential.

TABLE V: Policy simulation results for scenario 1

Case Occurrences
NMACs 0
Alerts 765,908

Given this discussion, it is reasonable to assume that the
programmed model and simulation comply well with the
requirements - both technical and “common sense” - desired
to ensure collision avoidance, allowing the migration to the
more general case with non-zero horizontal speeds. And, since
storage space is an important constraint in quadcopters, it is
worth noting that the policy file has a size smaller than 1 MB
for this scenario.

VII. SECOND ENCOUNTER SCENARIO: NON-ZERO
HORIZONTAL SPEEDS

For this scenario, the drones will have non-zero horizontal
speeds. To keep the number of possible states as small as
possible, v0 and v1 can only assume two values each. The
discretization for the state variables is shown in TABLE VI.
The variable ρ has its range increased in relation to the
previous scenario in order for the chance of a collision to
be higher. In this scheme, a total of 1,959,552 million states
were created.

TABLE VI: Discretization of state variables for scenario 2

Variable Grid Points
ρ 0, 0.5, 1, ..., 10 m
θ 0, 10, 20, ..., 350 degrees
ψ 0, 10, 20, ..., 350 degrees
v0 1, 2 m/s
v1 1, 2 m/s
τ 0, 1, ..., 5 s

aprev Already discrete

Differently from Section VI, it is not enough just to specify
τ in order to specify a policy slice, for there are different
combinations of ψ, v0 and v1 which should also be specified.
Some examples are shown in Fig. 5, Fig. 6 and Fig. 7. Again,
it is assumed no action has been issued previously, so aprev =
coc

Fig. 5, in which the intruder is heading directly towards
the owner aircraft, again shows some of the trends already
visible in scenario 1, such as the “hole” in Fig. 5a, meaning
no collision prevention is possible for these points, and the
tendency to prefer “bank left” action in Fig. 5b.

Fig. 6 on the other hand illustrates the effect of an “oblique”
encounter, with the owner and intruder having different speeds.
It is interesting to note that the expected action varies depend-
ing on the θ position of the intruder, completely suppress-
ing the previous existing symmetry. This is expected when
compared to the base ACAS Xu implementations, such as
shown in [8], which also show the actions necessary for the
intruder approaches from an oblique angle. Another example
of an oblique approach is shown in Fig. 7, reinforcing this
discussion. Fig. 7 also raises an interesting discussion: for
this combination of intruder heading and speeds, instead of

(a) τ = 1 s

(b) τ = 2 s

(c) τ = 3 s

Fig. 4: Optimal action plots for the first scenario. The plots
are polar with ρ and θ defined as in Fig. 2. Each plot indicates
a different τ slice.

(a) τ = 2 s

(b) τ = 3 s

Fig. 5: Optimal action plots for the second scenario. Each plot
indicates a different τ slice. In all plots, ψ = 180°, v0 = v1 =
1 m/s

a collision because of “opposite” paths, the aircraft converge
on the same position from the same direction.

Concerning the trajectory simulations, results are registered
in TABLE VI. The number of NMACs increases significantly,
showing that it is harder to avoid collisions when both aircraft
are moving. On the other hand, the reduction in the number
of alerts means that it is rarer for an encounter to happen in
this scenario. This is evident, for the risk of collision, given
v0 and v1, involves certain combinations of (ρ, θ, ψ) that may
not always be the case. Averaging the values of NMACs and
alerts of the two scenarios, the result is in the same ballpark
as those shown in [9].

TABLE VII: Policy simulation results for scenario 2

Case Occurrences
NMACs 9
Alerts 66,900

Finally, in terms of storage space, the policy file generated
by this encounter has a size of approximately 56 MB, which
is not exceedingly high.

(a) τ = 2 s

(b) τ = 3 s

Fig. 6: Optimal action plots for the second scenario. Each
plot indicates a different τ slice. In all plots, ψ = 240°, v0 =
1 m/s and v1 = 2 m/s

VIII. POSSIBLE MODEL IMPROVEMENTS

Evidently, some assumptions and hypotheses made during
the development of the model are quite naive. Starting with
the dynamic equations, which could include random noise
accelerations, meaning that ψ, v0 and v1 could change from
update to update. This type of approach has been described in
[3] and would result in altering the transition model calculated.

Still concerning the dynamical model, some other con-
straints might be relaxed. For instance, the drone could react
faster and with higher speeds if a collision is imminent, or
even could apply the lateral speed increasingly instead of
instantaneously. Also, the value chosen for vlat is actually
quite low if some commercially available quadcopters are
considered and could be increased, meaning collisions would
be less likely.

Another possible model improvement is to change the
reward function R(s), dependent only on the state, into a
function R(s, a), which also depends on the action. This could
eliminate the prioritizing of the first evaluated action by adding
a small additional negative reward if the action taken results
in the relative intruder bearing θ “changing sides” (eg. goes
from a value θ < 180° to θ > 180°).

(a) τ = 2 s

(b) τ = 3 s

Fig. 7: Optimal action plots for the second scenario. Each plot
indicates a different τ slice. In all plots, ψ = 30°, v0 = 2 m/s
and v1 = 1 m/s

Of the assumptions listed, the most controversial probably
is that the system possesses perfect state information. During
real operation, the current state is determined by measurements
acquired by the drone sensors, which undoubtedly include
errors and noises, not to mention the problem of even cal-
culating some variables, such as τ [5]. Bearing and heading
measurements specially are known to be imprecise. These
uncertainties added by the sensors can be included in the
modeling by transforming the MDP into a POMDP, which
can be done by adding an observation model O(o, s), which
is the probability of observing o given a state s [4]. One
possible example of observation model, for example, comes
from assuming that o follows a Gaussian distribution with
mean s and some chosen standard deviation.

Finally, given that small quadcopters tend to fly in low-
altitude, packed airspace, this simple one intruder encounter
may not be realistic. Works such as [11] offer some insight
into more realistic encounter modeling, for example. Indeed,
[2] cites the question of packed airspace as one of the
problems surrounding ACAS Xu, for the higher number of
states involved would require larger lookup tables that might
be too big to be stored even inside high performance drones,

much less a quadcopter. One possible solution is to make sure
that the quadcopter stays in contact with some ground station
that stores the lookup tables, but that could mean an increase
in response time.

IX. CONCLUSIONS

All in all, and even considering the simplicity of the
formulated model and simulation, it is safe to assume that
there is potential in applying ACAS Xu logic to quadcopters.
Though better models might give a more precise idea of
behavior during real life scenarios, the general sense obtained
in this article is that all important constraints and results were
kept within acceptable values.

Further investigation into this topic, however, will help
fine-tune the methodology in here described. Some possible
pathways for future research include simulation which take
the sensor into account and the description of situations with
multiple intruders during and encounter.

REFERENCES

[1] Mykel J Kochenderfer, Jessica E Holland, and James P Chrys-
santhacopoulos. Next-generation airborne collision avoidance
system. Tech. rep. Massachusetts Institute of Technology-
Lincoln Laboratory Lexington United States, 2012.

[2] Dimitra Giannakopoulou, Dennis Guck, and Johann Schu-
mann. “Exploring model quality for ACAS X”. In: Inter-
national Symposium on Formal Methods. Springer. 2016,
pp. 274–290.

[3] Mykel J Kochenderfer and JP Chryssanthacopoulos. “Robust
airborne collision avoidance through dynamic programming”.
In: Massachusetts Institute of Technology, Lincoln Laboratory,
Project Report ATC-371 130 (2011).

[4] Mykel J Kochenderfer. Decision making under uncertainty:
theory and application. MIT press, 2015.

[5] Guido Manfredi and Yannick Jestin. “An introduction to
ACAS Xu and the challenges ahead”. In: 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). IEEE.
2016, pp. 1–9.

[6] Michael P Owen, Adam Panken, Robert Moss, et al. “ACAS
Xu: Integrated Collision Avoidance and Detect and Avoid Ca-
pability for UAS”. In: 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC). IEEE. 2019, pp. 1–10.

[7] Tatsuya Kotegawa. “Proof-of-concept airborne sense and avoid
system with ACAS-X U flight test”. In: IEEE Aerospace and
Electronic Systems Magazine 31.9 (2016), pp. 53–62.

[8] Michael P Owen and Mykel J Kochenderfer. “Dynamic
logic selection for unmanned aircraft separation”. In: 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC).
IEEE. 2016, pp. 1–8.

[9] Mykel J Kochenderfer and James P Chryssanthacopoulos.
“A decision-theoretic approach to developing robust collision
avoidance logic”. In: 13th International IEEE Conference on
Intelligent Transportation Systems. IEEE. 2010, pp. 1837–
1842.

[10] Mykel J Kochenderfer, James P Chryssanthacopoulos, Leslie P
Kaelbling, et al. Model-based optimization of airborne colli-
sion avoidance logic. Tech. rep. MASSACHUSETTS INST
OF TECH LEXINGTON LINCOLN LAB, 2010.

[11] Mykel J Kochenderfer, Matthew WM Edwards, Leo P Espin-
dle, et al. “Airspace encounter models for estimating collision
risk”. In: Journal of Guidance, Control, and Dynamics 33.2
(2010), pp. 487–499.

