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Chapter 1

Introduction

The objective of the report is to detail the activities performed during my end of studies
internship, as required by ISAE-SUPAERO. Said internship took place between April 2022
and September 2022 at the Laboratory of Analysis and Architecture of Systems (LAAS),
in Toulouse, and was focused on the domain of robotics.

The mission of this internship was to study the manipulation of cable-suspended ob-
jects, using both a fleet of unmanned aerial vehicles (UAV) and interactions with the
environments, in order to arrive at the desired poses. This approach relies on methods de-
veloped previously for finger manipulators. After an initial formulation of the mathematics
of the problem and of its solution algorithm, this solution was then studied in computer
simulated environments so that its quality could be assessed.

As for the report’s structure, I will first describe the role and the history of LAAS,
followed by the specific role of the team of which I was part. Then a description of the
mathematical and computational formulations of the problem will be presented, followed
by a chapter discussing the results obtained.

1



Chapter 2

Context

2.1 LAAS-CNRS: A Research Lab

The Laboratory of Analysis and Architecture of Systems (LAAS) is a public research lab
which was founded in 1968 as a part of the National Center for Scientific Research (CNRS).
In its inception, founder Jean Lagasse dedicated the lab to the study of automation, back
then a newborn field, but this notion was surpassed when the growing complexity of tasks
led to the rise of the concept of “systems”. It was soon realized that automation was but a
part of a much larger context. Nowadays, the lab’s mission consists of modeling, designing
and controlling various sorts of complex systems, from microelectronics to human-robot
interactions. More precisely, the research developed at LAAS is split into six main areas:
networks/IT, robotics, decision and optimization, microwaves, energy management, and
“MicroNanoBio” Technologies, with each area being comprised of several different teams.
All the research done at LAAS is pointed towards five goal lines, which are shown in Fig.
2.1 [LAAS 2022].

Figure 2.1: Main applications areas of the LAAS’s research. Source: [LAAS 2022]

2



2.2. Team Robotics and Interactions (RIS) 3

As for the structure of the teams mentioned, the organizational chart of the lab can be
seen in Fig. 2.2. The activities of this internship took place in the midst of the RIS team,
which is a part of the robotics research area.

Figure 2.2: Organizational chart of the LAAS. Source: [LAAS 2022]

2.2 Team Robotics and Interactions (RIS)

The acronym RIS stands for Robotics and InteractionS, which summarizes well the
scope of the team: to design autonomous machines that combine and integrate “percep-
tion, reasoning, learning, and action/reaction capabilities” [LAAS 2022]. With the growing
complexity of the tasks performed by robots, the need to account for more refined inter-
actions between the platform and its environment makes the work developed by the RIS
team both fundamental and innovative. Moreover, it is not only the environment that falls
under the category of “interactions”: cooperation between robots, human operators and
interfaces with existing systems are all examples of interactions.

The philosophy employed by the RIS team is as follows: first, a set of tools is developed.
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These tools include architectures, controls, planners, etc. Then, these tools are used in the
context of three context areas: multi-robot systems, cognitive and interactive robots, and
molecular motion problems (which can be modeled as robotics problems) [LAAS 2022].
This structure is shown in Fig. 2.3.

Figure 2.3: Areas and tools of the RIS team. Source [LAAS 2022]

2.3 UAV Research Internship at RIS

Autonomous aerial vehicles have become more and more common in our society, and the
RIS team is working to ensure that UAVs are up to the tasks demanded of them. Over the
course of the years, the paradigm of UAV usage has shifted: initially, UAVs were employed
“in isolation”, meaning they avoided interacting with the environment and usually worked
alone. One example of such mission is aerial filming. However, current missions can require
cooperation, environment interaction, and other complex tasks. Consider for example a
scenario where a fleet of drones is used to do welding. Not only do the drones have to
cooperate among themselves, but a high degree of “environment reading” is required. This
evolution of the usage of UAVs can be summarized in Fig. 2.4 [Ollero 2021].
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Figure 2.4: Evolution of UAVs. Courtesy of Antonio Franchi @ LAAS

Among the new tasks required of UAVs, we can cite the example of object transporta-
tion/manipulation, which has become ever more common with the advent of drone delivery
services. Needless to say, this type of mission spans numerous applications, including plac-
ing objects in places which are dangerous or out of reach for humans, manipulating heavy
objects, dealing with objects which require high precision, etc. For many applications,
however, this type of mission requires more than one drone, be it because of the object’s
weight, size, geometry, etc. Coordinating the movement of all the drones manipulating
the object in order to make it arrive at the desired pose is not a trivial matter, but this
mission can be divided into three main problem subsets, such as shown in Fig. 2.5: a path
planning problem on the drones’ positions, a manipulation problem on the object’s pose,
and a control problem on the system drones-cables-object.
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Figure 2.5: Decomposition of the UAV manipulation problem

Several difficulties arise when dealing with these scenarios. First of all, let us consider
the problem of dealing with the control of the drones, which are now subject to varying
loads. This problem has been tackled in the works of [Sreenath 2013], for the case of a single
UAV, and of [Sanalitro 2020], for the case with multiple UAVs. As for the the problem of
generating the drones’ trajectories, it is clear that these trajectories are not known a priori
when considering the initial and goal poses of the object. When generating the trajectories,
part of the difficulty lies in the fact that there are many discontinuities involved in the
drones’/object’s path. In Fig. 2.6, one can see examples of such discontinuities: when the
object touches the surface, when the cable attaching a drone to the object is relaxed, etc.
These discontinuities and environmental interactions are not necessarily undesirable. As
an example, Fig. 2.7 shows a case where a drone could use the friction between the object
and the surface in order to change the object’s orientation.
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Figure 2.6: Sometimes multiple drones have to coordinate their movement and account for
environment interactions in order to successfully manipulate an object. Courtesy of Hann
Nguyen @ LAAS

Figure 2.7: A drone can make use of the environment to achieve its goal. Courtesy of Hann
Nguyen @ LAAS

As for the manipulation problem, previous solutions for situations involving discontinu-
ities consisted of proposing several high-level primitives, such as “grasping”, “pushing”, “piv-
oting”, etc. The work by [Byrne 2001], for example, observes 72 manipulation primitives
in gorillas, which means that this method of enumerating and designing motion primitives
might get out of hand fast if one deals with more complex manipulation problems.

In more recent work by [Cheng 2021b] a different approach has been proposed: instead
of defining motion primitives, it is possible to list different “modes” for the object’s contact
points, with each one of these modes being related to a set of constraints on force and
velocity. These constraints can be than added to a path planning algorithm, such as the
CBiRRT proposed in [Berenson 2009], in order to generate the trajectories that must be
followed by the drones. What was proposed by LAAS as the objective of the internship
was to adapt these tools to the context of UAVs in order to try and solve the problems
of path planning and object manipulation together. We shall explore the formalization of
this problem in the next chapter.



Chapter 3

Formulation of the UAV-Object
Manipulation Problem

3.1 Formal Description of the Problem

To begin our description of the problem, it is important to describe the physical elements
involved, which are listed below and illustrated on Fig. 3.1, following the same rationale
of [Cheng 2021b].

• Object O: Rigid polygonal object. We assume the object is homogeneous in density
and that its friction coefficient µobj is the same throughout its surface. This is the
payload that will be manipulated by the drones.

• Environment E : Collection of static, impenetrable polygonal shapes in the movement
region. Each shape of the environment can have a different friction coefficient µenv.

• Drones di: Each drone di is represented as a fully actuated punctual object with
mass mi. We have a total of Nuav drones involved. Also, as a further restriction,
each drone is connected to exactly one point on the object and no point on the object
is connected to more then one drone. The lengths of the cables connecting each drone
to the object are known and the cables are ideal.

• Contact points ci: points where the object is either touching one of the surfaces of
the environment or is attached to one of the cables.

8
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Figure 3.1: Physical elements used in the manipulation problem. Numbering is arbitrary
for this example

The existence of these objects allow us to define the frames of reference which are
relevant to the problem, as shown in Fig. 3.2. The world frame W is an inertial frame
fixed somewhere in the world; the body frame B is fixed at a point on the manipulable
object (not necessarily its center of mass); finally, each contact point has its own contact
frame Ci, which is a right-handed frame of reference where the y direction is defined by
the contact normal that points towards the interior of the object.

Figure 3.2: Frames of reference involved in the problem

With these frames in mind, together with the previous definitions presented, we can
define some key terms that will be used when solving this problem, while also further
formalizing some of the previously shown concepts.These also follow the same rationale of
[Cheng 2021b].
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• Object configuration q: An object configuration is the tuple (x, y, θ) that defines the
translation and rotation of frame B w.r.t. the frame W .

• Drone configuration d⃗. Each drone has a position d⃗i =

[
dix
diy

]
w.r.t. frame W 1. Com-

bining all drone positions, we get the drone configuration d⃗ =


d⃗1
d⃗2
...

d⃗Nuav

. Following

the nomenclature in [Fink 2011], the problem of finding d⃗(q) is called the inverse
configuration problem, while finding q(d⃗) is called the direct configuration problem.

• Contact points ci: Each contact point is defined by three attributes: its position,

normal, and type. The position p⃗i =

[
pix
piy

]
and unitary normal n⃗i =

[
nix

niy

]
, ∥n⃗i∥ = 1

are written w.r.t. frame B. It is worth reinforcing the point that the normal points
towards the interior of the object. Property type ∈ {environment, attachment}
defines the nature of the contact point.

• Contact mode mi: each contact point ci is assigned a contact mode mi which will
describe the interaction between the object and the surface/cable at that point. For
contact points of type “environment”, we have mi ∈ {fixed, separate, right-slide, left-
slide}. For contact points of type “attachment”, we have mi ∈ {strained, loose}. The
contact mode will define which constraints are acting on the contact point.

• Contact forces λ⃗i and contact velocities v⃗ci: on the object’s side of the contact inter-

action, each contact point is subject to contact force λ⃗i =

[
λix

λiy

]
and contact velocities

v⃗ci =

[
vcix
vciy

]
, both written w.r.t. the contact frame Ci.

Given these definitions, the problem we wish to solve consists of: given an environment
E and object O, an initial object configuration qinit and a goal configuration qgoal, we wish
to find the drones’ configuration path d⃗k, with k representing discrete steps, such that we
have q(d⃗0) = qinit and dist(q(d⃗N), qgoal) < Q for some value N , distance function for SE(2)

dist(q1, q2) and value Q. Moreover, for every 0 ≤ k ≤ N , we must respect the constraints
imposed by the environment/cables and the maximum limits admitted for the drones.

1I apologize for using di to refer to the drone and d⃗i to refer to the drone’s position. I was running out
of significant letters.
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3.2 Problem Tools

In order to develop the problem, we need to use some mathematical tools. These are
mostly described in [Murray 2017] and [Eade 2013], which are the main sources of this
section, unless otherwise stated.

3.2.1 SE(2) Algebra

Given the definition of the object configuration, we can find a one-to-one correspon-
dence between the configuration q and the homogeneous matrix representation gWB of the
transformation from frame B to W if we limit θ ∈ [−π, π), such as in (3.1). This is not
too complicated to visualize: after all, the object’s configuration q is just a shorthand
description of the frame B w.r.t. frame W . Since the configuration notation and the
homogeneous matrix notation are equivalent, with the latter simply being the preferred
form for algebraic multiplication, they will be used interchangeably and both will be re-
ferred to as the object’s pose. Also, the concept of transformation matrix, although used
in (3.1) to express the relation between frames B and W , can be extended to describe the
transformation between any two reference frames.

q = (x, y, θ) ⇐⇒ gWB =

cos θ − sin θ x

sin θ cos θ y

0 0 1

 ∈ SE(2) (3.1)

Considering that we have gWB ∈ SE(2), all the properties of SE(2) algebra apply. For
example, we can define a twist ξ̂ ∈ se(2) such that:

eξ̂ ∈ SE(2)

Twists are of the general form shown in (3.2). One can see that any real multiple of
this general form is also a general twist. Given that definition, we can define operator “vee”
V which yields ξ, the so-called twist coordinates of ξ̂, as shown in (3.3). In an analogous
sense, it is not hard to define the inverse operator “wedge” ,̂ as in (3.4), which transforms
twist coordinates to a twist ∈ se(2).

ξ̂ =

0 −ω vx
ω 0 vY
0 0 0

 (3.2)

ξ̂V =

0 −ω vx
ω 0 vY
0 0 0

V

=⇒ ξ =

vxvy
ω

 (3.3)



3.2. Problem Tools 12

ξˆ=

vxvy
ω

ˆ =⇒ ξ̂ =

0 −ω vx
ω 0 vY
0 0 0

 (3.4)

Using the general form of the twist from (3.2), we can calculate the value of the matrix
exponential in (3.5) (which conversely allows the calculation of a matrix logarithm for
SE(2), such as in (3.6)). These expressions can be computed from the infinite expansion
of the general matrix exponential, but this is left implicit. Also, the value of the expression
for when ω = 0 can be obtained from the limit, resulting in identities.

ξ̂ =

0 −ω vx
ω 0 vY
0 0 0

 =⇒ eξ̂ =

cosω − sinω 1
ω
[vx sinω − vy(1− cosω)]

sinω cosω 1
ω
[vx(1− cosω) + vy sinω]

0 0 1

 (3.5)

eξ̂ =

cos θ − sin θ x

sin θ cos θ y

0 0 1

 =⇒ ξ̂ =

0 −θ θ
2
[x cot θ

2
+ y]

θ 0 θ
2
[−x+ y cot θ

2
]

0 0 0

 (3.6)

The advantage of these definitions is that they allow us to define a body velocity, which
is the linear and angular velocity of the frame B, as measured by an observer at the frame
W , but expressed in terms of the frame B. Mathematically, the body velocity twist v̂b,
which can be easily converted to and from twist coordinates, is defined in (3.7), where ∆t

represents a time step and t is a general time parameter2. We can use this velocity to
update the body’s pose, or conversely we can find a velocity given a desired pose and a
time interval, such as in (3.8) (where for convenience we have set (t = 0)). However, for
these equations, it is important to stay in regions where v̂b is piecewise constant.

gWB(t+∆t) = gWB(t)e
v̂b×∆t (3.7)

v̂b =
1

∆t
log[g−1

WB(0)gWB(∆t)] (3.8)

As for the absolute distance between to elements q1, q2 ∈ SE(2), we will use the same
function offered in [Cheng 2021b], expressed in (3.9), where wr is a weight parameter.

dist(q1, q2) =
√

(x1 − x2)2 + (y1 − y2)2 + wr min(|θ1 − θ2|, 2π − |θ1 − θ2|) (3.9)
2The reason why we didn’t use the notation v⃗b for the body velocity in twist coordinates was to avoid

notation overload when dealing with the twist ˆ⃗vb
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The final tool from SE(2) algebra needed to describe our problem is the adjoint matrix
Adpose, expressed in (3.10), which transforms tangent spaces and will be used to build the
so-called “grasp map” on the object.

g =

cos θ − sin θ x

sin θ cos θ y

0 0 1

 =⇒ Adg =

cos θ − sin θ y

sin θ cos θ −x

0 0 1

 (3.10)

3.2.2 Grasp Map: Relating Contact Frames To Body Frame

The grasp map G is a matrix which allows us to convert forces acting on the contact
points, expressed in the contact frames, to a wrench acting on the body frame B and
expressed in that frame. The construction of this matrix follows the same method as in
[Murray 2017]. First, we can find the transformation matrix gBCi

from contact frame Ci

to body frame B using p⃗i and n⃗i, which are geometrically determined and known at each
instant. This construction is expressed in (3.11).

gBCi
=

 niy nix pix
−nix niy piy
0 0 1

 (3.11)

Knowing the contact frame’s transformation matrix, we can built the contact map Gi

as in (3.12), which relates the force λ⃗i to the wrench F⃗B
i on the frame B via the equation

F⃗B
i = Giλ⃗i. It is worth noting that the matrix at the right is what converts the force on

the contact to the wrench on the contact frame (which is assumed to lack a torque). To
build the complete grasp map, we can consider that the total wrench on the body frame
as a sum F⃗B =

∑
i F⃗

B
i , which results in a grasp map G as defined in (3.13), where n is the

total number of contact points and F⃗B = Gλ⃗, with λ⃗ =


λ⃗1

λ⃗2

...

λ⃗n


Gi = AdT

g−1
BCi

×

1 0

0 1

0 0

 (3.12)

G = [G1, G2, ..., Gn] (3.13)

Conversely, we can also use the grasp map to relate the body velocity in twist coordi-
nates vb to the velocity of the contact points in the contact frame. This is done in (3.14),
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where v⃗c =


v⃗c1
v⃗c2
...

v⃗cn

.

v⃗c = GTvb (3.14)

The reason for these conversions is that we will apply the constraints at the contact
points, but we want to see how they relate to the object’s movement.

3.2.3 Drone Limitations and Description

As was said before, each drone di is subject to certain limitations. These are:

• Limitation on the maximum thrust Tmax
i . Considering the thrust T⃗i exerted by the

drone, we must have ∥T⃗i∥ ≤ Tmax
i at all times. This will be important when solving

the problem of finding the forces on the object.

• Limitation on the maximum banking angle ϕmax
i . We can find the banking angle

ϕi of each drone w.r.t. the world vertical by knowing its thrust and applying ϕi =

arccos
(

−g⃗
∥g⃗∥ ·

T⃗i

∥T⃗i∥

)
= arccos

(
Tiy

∥T⃗i∥

)
. At each instant, we must have ϕi ≤ ϕmax

i

If we can determine all the contact forces λ⃗ acting upon the body, we can find the
value of T⃗i for each drone by applying simple transmission of the forces through the cable
together with some frame rotations. Suppose drone j is connected to contact point i on
the body, then the value of T⃗j is given by (3.15), where the R matrices represent rotation
matrices ∈ SO(2). It is worth noting that the value of T⃗j is written w.r.t. the world frame
W .

T⃗j = RWB ×RBCi
× λ⃗i −mj g⃗ (3.15)

Moreover, we can also use the forces to find the position d⃗j of the drone w.r.t. the
world frame. If we consider that the forces can only act in the direction of the cable and
considering that cable of length lij connects contact point i to drone j, the position of
drone j in the world frame is given by (3.16), whic assumes a cable force pulling on the
object. It goes without saying these positions should be valid: for example, the drone can’t
be inside a part of the environment or inside the object.

[
d⃗j
1

]
= gWB ×

[
lij ×RBCi

× λ⃗i

∥λ⃗i∥
+ p⃗i

1

]
(3.16)
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3.2.4 Constrained motion

The choice of a contact mode mi on a contact point ci leads to the application of
constraints on the contact force λ⃗i and on the contact velocity v⃗ci. The original formulation
of these constraints comes from [Cheng 2021b], but here they are broken down into a force
problem and a velocity problem, for reasons that will become apparent when we deal with
the path planning algorithm. Moreover, the solution of the force problem allows us to solve
the inverse configuration problem in an efficient manner.

Force Problem

For contact points of type environment, the constraints acting on the contact forces λ⃗i

are a function of the contact mode, as shown in (3.17). In these equations, we have the
friction coefficient µ = µobjµenv, where µenv is evaluated on the environment at the contact
point. 

λix = 0, λiy = 0, if mi = separate
λiy > 0,−µλiy < λix < µλiy, if mi = fixed
λiy > 0, µλiy + λix = 0, if mi = right-slide
λiy > 0, µλiy − λix = 0, if mi = left-slide

(3.17)

The force constraints for contact points of type attachment can be seen in (3.18) as
functions of the point’s contact mode. The rationale behind these constraints is that the
ideal cable can only pull, but not push, with “pulling” being defined as a force in the
negative y direction of the contact frame Ci. It is important to note that satisfying the
force constraints in the attachment contact points does not necessarily mean that the limits
on the drones’ thrust and banking angle will be respected.{

λiy < 0, if mi = strained
λix = 0, λiy = 0, if mi = loose

(3.18)

Equations (3.17) and (3.18) specify the constraints on each contact point, but the con-
straints on all points must be satisfied at the same time. Therefore, we must consider not
each point individually, but the total set of n contact points c = [c1, c2, ..., cn]

T , contact
modes m = [m1,m2, ...,mn]

T and contact forces λ⃗ = [λ⃗T
1 , λ⃗

T
2 , ..., λ⃗

T
n ]

T . Moreover, we will
solve the problem of the forces acting upon the object under a quasi-static assumption,
meaning that at each instant we must satisfy (3.19), where F⃗B

e (q) is the external wrench
applied on the object, which does not from contact forces, as viewed in the body frame B,
for some configuration q of the object. This equation follows naturally from the construc-
tion of the grasp map if we wish that the object be at static equilibrium at all times. This
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model, which assumes no accelerations, admits velocities on the object, but does not deal
with the mechanism of how to imprint such velocities.

G(c)λ⃗+ F⃗B
e (q) = 0 (3.19)

Equations (3.17)-(3.19) are either linear equations or linear inequalities acting on the
contact points, meaning it is possible to compile all information about the constraints in a
matrix system of equations and inequalities. Such a system is written in (3.20), where the
matrices involved are a function of the contact modes m (which also defines the contact
types, since there are no two modes alike for different types). Moreover, matrix Aeq,f is
also a function of the contact points c, insofar as the information about the grasp map is
embedded in it. The same logic applies when explaining that beqf is a function of q, since
this matrix contains F⃗B

e (q). {
Aeq,f (m, c)λ⃗ = beq,f (m, q)

Aineq,f (m)λ⃗ > bineq,f (m)
(3.20)

The system written in (3.20) is not necessarily determined, which means these equations
might not be enough to calculate the value of λ⃗. However, we can use this system as
constraints to a minimization problem, such as the one shown in (3.21).

min
λ⃗

∥λ⃗∥2

s.t. Aeq,f λ⃗ = beq,f

Aineq,f λ⃗ > bineq,f

(3.21)

By solving (3.21), which is a quadratic minimization problem subject to linear con-
straints, we find the set of contact forces λ⃗ with the smallest module that still respects the
constraints imposed by the contact modes. It is important to remark that these operations
take place before the object’s movement, which means that there is no information whether
it is possible to solve the force problem after applying a velocity to the object.

Finding λ⃗ by means of (3.21) allows us to solve the inverse configuration d⃗(q) by in-
putting λ⃗ in (3.16). We can also use the contact forces to calculate the drones’ thrusts in
(3.15). The values of d⃗i and T⃗i can then be used to verify if no violation of the drones’
limits ocurred and if their positions are valid.

Velocity Problem

The solution of the velocity problem follows a similar rationale to that of the force
problem and was also first proposed in [Cheng 2021b]. We start by defining a direct body
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velocity vd between two object configurations qk and qk+1, to be obtained from (3.8). There
are, however, constraints on the contact velocities as a function of the contact modes. It
is worth remarking that these contact modes are the same that were chosen during the
solution of the force problem. For contact points of environment type, these constraints
are listed in (3.22). There are no constraints on the velocity of attachment contact points.


vciy > 0, if mi = separate
vciy = 0, vcix = 0, if mi = fixed
vciy = 0, vcix > 0, if mi = right-slide
vciy = 0, vcix < 0, if mi = left-slide

(3.22)

All these constraints are, again, linear equations and inequalities, meaning that they
can be compiled into a single system by joining the contact velocities v⃗c = [v⃗Tc1, v⃗

T
c2, ..., v⃗

T
cn]

T .
The system is shown in (3.23).

{
Aeq,vc(m)v⃗c = beq,vc(m)

Aineq,vc(m)v⃗c > bineq,vc(m)
(3.23)

We are interested in the velocity of the object, not of the contact points. If we consider
vo the object’s body velocity in twist coordinates, we can use the grasp map transformation
in (3.14). This transformation means we can write (3.23) in terms of vo in (3.24), with
Aeq,vo = Aeq,vcG

T and Aineq,vo = Aineq,vcG
T .

{
Aeq,vo(m, c)vo = beq,vo(m)

Aineq,vo(m, c)vo > bineq,vo(m)
(3.24)

We can use the system in (3.24) as a constraint to a minimization problem that allows
us to find vo such that vo is the closest possible velocity to vd that still respects the contact
mode constraints (3.25).

min
vo

∥vo − vd∥2

s.t. Aeq,vovo = beq,vo

Aineq,vovo > bineq,vo

(3.25)

Solving this velocity problem yields vo, which can be used to update the body’s position
to q′k+1 via the implicit relation in (3.26), which is the same as (3.7), but with an explicit
reference to the object’s transformation matrix as a function of its configuration. This
equation uses discrete steps (separated by time ∆t) when implemented in a computer
program.
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gWB(q
′
k+1) = gWB(qk)× e∆tv̂o (3.26)

Movement Manifolds

Given a set of contact points, the choice of contact modes restricts the movement of the
object to certain configuration spaces, which can intersect among each other. Consider,
for example, the object in Fig. 3.3, where the environment contact point is set either to
right-slide or fixed, and where all restrictions on the drones’ movement have been ignored.
When we evaluate the boundaries of the configuration regions defined by each environment
contact mode, we can see that they intersect, as shown in Fig. 3.4. These intersections are
what makes a solution to the path planning problem possible, for they enable the transition
between two different configuration spaces.

Figure 3.3: This object has two attachment points and a single environment contact point.
The environment contact point can be set to “fixed” or “right-slide”

Figure 3.4: Boundaries of the configuration regions for two different contact modes



Chapter 4

Path Planning Algorithm

4.1 Classes and Program Diagram

In order to explain the algorithm used, we will describe the classes implemented and
their relations.

4.1.1 Algebra Module

The module lie.py implements the tools discussed in section 3.2.1 (and some tools for
rotation matrices ∈ SO(2)). This module was built around the numpy matrix structure,
which is similar to the traditional array but optimized for 2D arrays. This module is just a
collection of static functions and has no constructors, therefore its “objects” cannot be used
directly as attributes by other modules, but lie.py serves as a background tool for most of
the operations performed. The reduced UML diagram (which includes no specification on
variable typing or dependency relations) for the module can be seen in Fig. 4.1 and gives
an overall sense of the module.

Figure 4.1: Reduced UML diagram for lie.py module

19
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4.1.2 Environment

In order to define the environments, which is done in the module environments.py, we
need two classes: EnvironmentShape and Environment, whose UML diagrams are shown
in Fig. 4.2. Concerning the functionality of this module, each EnvironmentShape object is
composed of a geometry, which is a list of (x, y) points defining vertices for a convex geom-
etry, a state defining where the shape’s frame of reference is w.r.t. the world, and a series
of properties (friction coefficient µenv, elasticity and color). An Environment object is com-
posed of a list of EnvironmentShape objects, plus some class constants to define all environ-
ments. Notice that it is possible to create non-convex shapes in the environment by over-
lapping convex shapes. The function that should be called is generate_environment, which
takes a name as an argument and returns an Environment object. Four environments are
currently supported, which are illustrated in Fig. 4.3: “plain_surface”, “rugged_surface”,
“ground_and_central_hill”, “ground_and_central_bump”.

Figure 4.2: Reduced UML diagram for environments.py module
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Figure 4.3: Schemes of the current supported environments

4.1.3 Drones

Module drones.py is quite straightforward and its UML is show in Fig. 4.4: it is com-
posed of a single GenericDrone class, which contains the parameters needed to define the
maximum thrust, maximum banking angle, and the mass of some generic drone. Objects
of this class also have an attribute defining their position w.r.t. the world frame.

Figure 4.4: Reduced UML diagram for drones.py module
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4.1.4 Manipulable Object

The ManipulableObject class, whose simplified UML is in Fig. 4.5, works similarly to
the Environment class insofar as it is also constituted of several convex shapes (Object-
Shape objects) which bundle together to form a single object O. The difference is that
ManipulableObject objects also contain information about drone connections, such as the
drones di in question, the attachment points and normals, and the length of the cables. An
object from the ManipulableObject class is the element that will be manipulated by the
drones. Finally, since we will be dealing with squares by default, a function just to create
square objects has been implemented.

Figure 4.5: Reduced UML diagram for objects.py module

4.1.5 Simulator

The simulation.py module contains the Simulator class, which is mainly used to deter-
mine contact points between the object and its environment. This class uses the Pymunk
package [Blomqvist 2022], which is a simple, python-based, 2d physics library, as a back-
end engine. The environment, manipulable object and drones are added to the simulation
space, which can alter some of their properties, such as the current configuration. Moreover,
the Simulator object also detects shape overlapping, which is useful during the movement
phase of the program, since overlaps between the environment and the object can occur.
The UML for the Simulator class is shown in Fig. 4.6.
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Figure 4.6: Reduced UML diagram for simulation.py module

4.1.6 Constraint Calculator

In the constraints.py module, we implement the equations defined in sections 3.2.3 -
3.2.4. The UML for class ConstraintCalculator is show in Fig. 4.7. It is worth noting
that this class works in close proximity with the Simulator class when obtaining contact
information. Furthermore, this class uses the library qpsolvers [Caron 2022] to solve the
minimization problems defined in 3.21 and 3.25. One important aspect of the compu-
tational implementation of the minimization problem is that the package transforms the
strict inequalities presented into non-strict inequalities, meaning that solutions for two
different contact modes can be numerically equal.
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Figure 4.7: Reduced UML diagram for contraints.py module

4.1.7 Scenario

Finally, the Scenario class, whose UML is in Fig. 4.8, is comprised of parts from all the
previous classes, plus a few other attributes. In terms of the classes previously presented,
a scenario is comprised of:

• 1 Environment object

• 1 ManipulableObject object, to which are linked Nuav GenericDrone objects

• 1 Simulator object, which is linked to the Enironment object and to the Manipula-
bleObject object

• 1 ConstraintCalculator object, which is liked to the Simulator object
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As for the attributes of this class which were not previously defined, their explanation
is as follows:

• int_time: Value of ∆t to be used in (3.7)

• vb_time: Value of ∆t to be used in (3.8)

• init_state: Initial configuration qinit of the manipulable object

• goal_state: Goal configuration qgoal of the manipulable object

• parameters : Static dictionary containing some default values for the class

Figure 4.8: Reduced UML diagram for scenarios.py module

As for the attribute name, this is what defines the scenario and is used as one of the
arguments of static function generate_scenario. The other argument for the function is
the variable variant, which defines subtle changes upon the scenario, namely the initial
and goal configurations. The scenario names and their descriptions, together with possible
variants, are shown in Figs. 4.9 - 4.13, where the initial configuration is in blue and the
goal configuration is in green. When calling the main function, the name of the scenario
and the number of the variant desired are inputs supplied by the user. The python library
PyGame [Shinners 2022] was used to visualize these scenarios.
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(a) Variant 1 (b) Variant 2 (c) Variant 3

Figure 4.9: Scenario: “square_on_surface”

(a) Variant 1

Figure 4.10: Scenario: “square_over_hill”

(a) Variant 1

Figure 4.11: Scenario: “square_over_bump”
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(a) Variant 1

Figure 4.12: Scenario: “slide_square_on_rugged_surface”

(a) Variant 1 (b) Variant 2 (c) Variant 3

(d) Variant 4 (e) Variant 5

Figure 4.13: Scenario: “square_with_single_drone”

4.2 RRT Path Planning Algorithm

The main sequence for executing our version of the rrt algorithm can be seen in algo-
rithm 1, which will now be explained part by part. First of all, we should define the input
and output of this algorithm. To run this algorithm, the inputs are the scenario name and
the variation desired, as well as if the user desires the algorithm to be animated or not.
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As for the other parameters that could be adjusted, such as the times ∆t involved and the
weight wr in the distance function, these are variables which are saved in the parameter
attributes of the respective classes.

1 $ python main.py <scenario_name > <variation > <animate >

• scenario_name: one of the names defined in section 4.1.7.

• variation: integer number.

• animate: “false”, “partial” or “full”. Details the level of animation desired. Affects
time performance of the algorithm.

Three files should be seen as the output of the program: one “tree_info.txt”, which
contains information about the program execution, and two json files, with one representing
the full tree and the other representing the path to the goal. As for the tree, it was modeled
as a dictionary of the form {qi : [(qd, d⃗, contact-modes)]}, which means that the tree is
a dictionary where each key is an object configuration qi which points to a list of edges,
where edges are defined by the destination object configuration qd obtained from 3.26,
the position of the drones for the movement d⃗, and the contact modes involved in the
movement.

We shall now describe the functions involved in algorithm 1. Right off, the function
“generate-random-node” returns a random object configuration qrand which respects the
limits of the environment. The argument of the function is a probability which specifies
the chance of qrand = qgoal. This argument can be varied to account for more aggressive
pursuits of the goal. The function “find-closest-node” searches all the keys in the tree
and returns the object configuration which is the closest to qrand, based on (3.9). The
next two functions “snap-simulator-to-node” and “update-simulator-information” simply
recompute the contacts p⃗ and n⃗, as well as the grasp map G, on the object after changing
its configuration qnear.

After updating the object’s contact information, we calculate the direct body velocity
between the current configuration and the desired configuration using (3.8), implemented in
function “direct-velocity”, since this does not depend on the contact mode chosen. Also, we
can now enumerate the possible contact modes, which in total are nmodes = 2natt ·4nenv where
natt and nenv are the number of attachment and environment contact points respectively.
Of course, not every one of these modes will always be feasible, and [Mason 2001] even
describes an algorithm for the purpose of determining which are, but we’ll ignore this
problem in this work, for there is little gain to be obtained from this method in 2D scenarios.
To save programming time, it is easier to just iterate through all possible contact modes,
regardless of a priori feasibility, which is what the algorithm does next.
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Algorithm 1: Expansion of the random tree T
1 Function expand(T : Tree)
2 while not T .found_goal and T .nodes < T .max_nodes do
3 qrand = generate-random-node(T , prob)
4 qnear = find-closest-node(T , qrand)
5

6 T .snap-simulator-to-node(qnear)
7 T .update-simulator-information()
8

9 vd = direct-velocity(qnear, qrand)
10 possible_modes = T .simulator-enumerate-modes()
11 for contact_modes ∈ possible_modes do
12 forces = solve-force-problem(contact_modes)
13 drones_pos, are_drones_valid = inverse-configuration(forces)
14

15 vo = solve-velocity-problem(contact_modes, vd)
16

17 if (are_drones_valid) and (vo is not None) and (forces is not
None) then

18 qnew, is_node_valid = move-object(qnear, vo)
19 if is_node_valid then
20 T .found_goal = T .is-goal(qnew)
21 T .add-node(qnew)
22 T .node(qnear).add-edge(qnew, drones_pos, contact_modes)
23 end
24 end
25 end
26 end
27 end
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Considering the constraints in (3.17), (3.18) and (3.22), we see that the value of the
forces on the object and the feasible body velocity depend on the contact modes chosen.
Function “solve-force-problem” compiles the matrices for the system in (3.20) and solves
the minimization in (3.21) The value of these forces is then used in function “inverse-
configuration” to calculate equations (3.16) and (3.15) and to verify if the drone limits are
respected. Finally, the same contact modes are used to find the velocity constraint matrices
in (3.24) and solve the problem in (3.25) in function “solve-velocity-problem”, which yields
vo, the velocity which is the closest to vd while still respecting the constraints imposed by
the contact modes.

If there is a valid set of forces that solve the problem, and these forces result in valid
drone positions, and there is a feasible velocity which respect the constraints, then we
try to apply the velocity to the body using (3.26). The function “move-object” is a bit
complex and is expanded upon in algorithm 2. First and foremost, at least one of the
components of velocity vo must be higher than a certain threshold in order for the movement
to be computed. If that is the case, a new object configuration is obtained via function
“apply-body-velocity”, which implements (3.26). The tricky part is function “check-validity”.
This does two things: 1) it sees if the new object configuration is not overlapping any
environment shape and 2) it checks if there is at least one possible set of forces that can
keep the new configuration in static equilibrium. The function checks this set of forces by
setting all attachment contact modes to “strained” and all environment contact modes to
“fixed”, which is the set of contact modes that exerts the least force upon the object. The
reason for this check is to avoid tree nodes from which no expansion can possibly occur, for
it is impossible to keep the object static. More on the consequences of this post-movement
check will be shown in chapter 5.

Algorithm 2: Function “move-object”
1 Function move-object(qcurrent, vo)
2 if abs(vo) < threshold then
3 return qcurrent, False
4 else
5 qnew = apply-body-velocity(qcurrent, vo)
6 is_state_valid = check-validity(qnew)
7 return qnew, is_state_valid
8 end

Finally, if the new configuration if valid, functions “add-node” and “add-edge” just add
the corresponding node and edge, which are based upon the tree formulation which were
previously shown.
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Results

The scenarios described in section 4.1.7 were run by means of the previous algorithm,
with their results described below. Unless otherwise stated, the program was run with a
limit of 500 nodes on the tree, a probability of 20% of sampling the goal configuration, and
a goal radius of 0.2 (for wr = 1). Considering the specific implementation of the simulation,
it is important to state that the objects shown in the pictures were also actuated, with their
positions controlled directly together with the position of the drones. The reason for this
is that Pymunk does not deal well with moving constraints. Moreover, as will be discussed
in Chapter 6, translating the movement of the drones into movement of the object is not
always simple in practice. This is why we chose to also control the position of the object
in these animations.

5.1 “Square_on_surface” Scenario

5.1.1 Variant 1

This simple scenario serves to test some basic properties of the algorithm. There is
a remarkable property to this scenario in that its result, shown in Fig. 5.1 is counter-
intuitive: instead of simply sliding the object on the surface, the drone lifts it and reaches
the goal from above. This is not the most efficient way to solve the problem (meaning that
the algorithm is not optimal), and it is clear that the object does not explore the manifold,
but it arrives at the goal nevertheless. Some data for this scenario is available in Table 5.1.

31
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(a) Extended tree (b) Goal path (c) Final object position

Figure 5.1: “Square_on_surface” variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
5/5 6.572 s 97 25 77 0.191

Table 5.1: Average values for scenario 1 - variant 1

5.1.2 Variant 2

If the block is allowed to leave the surface, the problem is not solved. Fig. 5.2 shows
this situation: even though the object gets to a minimal distance of 0.275 to the goal
configuration, it is still unable to reach this configuration. If we ensure that the block
stays on the surface, the algorithm is successful in dealing with this scenario. Comparison
with scenario 5, variant 2 (which was actually tested first), hints that keeping the object
attached the surface is key to solving the rotation problem. Indeed, by restraining the
object’s move so that it stays attached to the surface, we get solutions such as the one in
Fig. 5.3 and the results registered in Table 5.2.
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Figure 5.2: Extended tree - Scenario 1 variant 2

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.3: “Square_on_surface” variant 2 - alternate version with movement restricted
to surface

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
4/5 8.879 s 95 29 64 0.151

Table 5.2: Average values for scenario 1 - variant 2

5.1.3 Variant 3

This scenario variant explores the capability of the drone to deal with goals that include
rotation. By setting the goal in the air, we free the object from any constraint requirements
except that it be in equilibrium at all times. We see in Fig. 5.4 that the object gets to the
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goal, albeit through a kind of crooked path. Information about the results of this scenario
are shown in Table 5.3.

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.4: “Square_on_surface” variant 3

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
5/5 5.415 s 88 27 80 0.188

Table 5.3: Average values for scenario 1 - variant 3

5.2 “Square_over_hill” Scenario

5.2.1 Variant 1

This scenario was designed to check if the drone could avoid an obstacle in its path. In
this scenario, it would be impossible to arrive at the goal if we pursued it directly, without
any random sampling. The results shown in Fig. 5.5 show that the drones can indeed
contour an obstacle. Results for this scenario are show in Table 5.4.

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.5: “Square_over_hill” variant 1
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Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
5/5 88.53 s 306 62 403 0.190

Table 5.4: Average values for scenario 2 - variant 1

5.3 “Square_over_bump” Scenario

5.3.1 Variant 1

Fig. 5.6 shows a successful case when this scenario was executed. It is worth noting that
the objective here was to try to flip the object using the bump, without lifting, therefore
a constraint was created where at least one of the points of the object must be touching a
surface. Table 5.5 shows this scenario is often unsuccessful, but it did manage to achieve
its objective more than once.

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.6: “Square_over_bump” variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
2/5 140.21 s 490 40 415 0.315

Table 5.5: Average values for scenario 3 - variant 1

5.4 “Slide_square_on_rugged_surface” Scenario

5.4.1 Variant 1

The objective to this scenario is to see how the model behaves when faced with different
friction coefficients. If we allow unrestricted movement of the object, we have seen before
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that the object will typically be lifted from the surface, which kind of defeats the purpose
of this scenario, such as in Fig. 5.7.

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.7: “Slide_square_on_rugged_surface” variant 1

Therefore, in order to study this scenario, we have placed the condition that the contact
mode “separate” is not valid for environment contact points, which means the object will
stay attached to the surface and cannot rotate, such as in Fig. 5.8. The accumulated data
for this scenario is seen in Table 5.6.

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.8: “Slide_square_on_rugged_surface” variant 1 - alternate version with move-
ment restricted to surface

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
5/5 57.33 s 57 21 96 0,135

Table 5.6: Average values for scenario 4 - variant 1

As for the behavior of the object on the surface, it was observed that the change in
frictions was reflected in the drones. Taking the rightmost drone as representative, the
angle of its cable with the vertical direction increases by around 3% when it is in the red
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zone as opposed to its value in the blue zone. Drone thrust increased by 46% in the same
case (for a massless drone). Both these values are in agreement with the expectation that
the drones will have to offer more push in the horizontal direction to compensate the higher
friction of the red zone as opposed to the lower friction of the blue zone.

5.5 “Square_with_single_drone” Scenario

5.5.1 Variant 1

Variant 1 of this scenario offers some interesting insight into the movement of the drone,
which is along the same lines as scenario 1, variant 1: namely that the algorithm does not
optimize for minimal drone effort. In effect, the contact modes on the object alternate from
“separate”, which entails more effort on the drone’s part, and “right-slide”, which alleviates
contact on the drone by allowing the surface to counter some of the object’s weight. Fig.
5.9 shows a moment where the drone is lifting the object and a moment when it is dragging
the object. The full scenario can be seen in Fig. 5.10 and its details are summarized in
Table 5.7.

(a) Drone dragging the object on the table. Its
angle compensates the table’s friction

(b) Drone lifting the object, which only slightly
touches the table

Figure 5.9: Comparison between two different behaviors for the drone-object system, which
alternate among each other during transport
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(a) Extended tree (b) Goal path (c) Final object position

Figure 5.10: “Square_with_single_drone’ variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
5/5 14,54 s 163 14 77 0.159

Table 5.7: Average values for scenario 5 - variant 1

5.5.2 Variant 2

Contrary to the analogous variation in the first scenario - where two drones had to
rotate the object in the direction of the movement - this time the algorithm is successful,
mainly because it is extremely unlikely that a single drone could lift the object from the
surface in our sampling method because of the quasi-static condition (since the object has
to stay static at each moment, the desired pose would need to have an angle equal to zero
so that the object could be lifted). Data about this scenario is summarized in Fig. 5.11
and Table 5.8.

(a) Extended tree (b) Goal path (c) Final object position

Figure 5.11: “Square_with_single_drone’ variant 2
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Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
4/5 6.853 s 113 22 57 0.106

Table 5.8: Average values for scenario 5 - variant 2

5.5.3 Variant 3

As shown in Table 5.9, this variant is unsuccessful. Fig. 5.12 shows that the object
explores the surface, but doesn’t get close enough in rotation to match the goal.

Figure 5.12: Extended tree - Scenario 5 variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
0/5 37.39 s 501 - 318 1.669

Table 5.9: Average values for scenario 5 - variant 3

5.5.4 Variant 4

The results for this variant are registered in Fig. 5.13 and Table 5.10. For reasons that
will become clear in the following variant, the reason why the number of nodes in the tree
is equal in average to the number of nodes in the path is because the object only moves
when the goal is sampled. This is because the goal’s angle is exactly zero, which enables
quasi-static movement.
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(a) Extended tree (b) Goal path (c) Final object position

Figure 5.13: “Square_with_single_drone’ variant 4

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
5/5 4.443 s 30 30 167 0.192

Table 5.10: Average values for scenario 5 - variant 4

5.5.5 Variant 5

Variant 5 is basically a combination of variant 4 and variant 2, which are both successful.
We see, however, that variant 5 is unsuccessful: not only it doesn’t reach the goal, it does
not even add nodes to the tree, as shown in Table 5.11. The explanation for why no nodes
are added can be seen in Fig. 5.14: from the starting position, the object gets a random
sampled point (yellow) as destination; the static condition is checked before the movement
and there are no constraints on the velocity, so it moves in translation and rotation towards
the next goal. After its movement, the object now has an angle, meaning it cannot be kept
statically by a single drone, therefore the new point is not added to the tree. This process
is then repeated. The only way for the object to move in this case is if the sampled point
has exactly zero angle, but the chance of that happening is quite low (but non-zero, since
the sampling is discrete).
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(a) Before movement (b) After movement

Figure 5.14: Movement in scenario 5 variant 5

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal
0/5 Inf s 1 - Inf 5.565

Table 5.11: Average values for scenario 5 - variant 5
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Possible Improvements and Next Steps

Considering the results previously presented, some improvements to the model used are
suggested so that better performance can be achieved.

6.1 Extending RRT to the maximum

The formulation presented in algorithm 1 uses small, fixed increments when calculating
the object’s movement. As we have seen, this results in the movement manifolds not being
explored. Recall scenario 1 variation 1, for example, where the simplest solution would
just be to slide the object on the table.

Based upon these considerations, one possible improvement for the model is to expand
the tree in a manifold until vo = 0, as exemplified in Fig. 6.1, which illustrates this
idea for the case where all environment contacts are of mode “right-slide”. As shown
by [Cheng 2021b], applying this behavior means that we project configurations upon the
movement manifold.

42
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Figure 6.1: Comparison of fixed distance increment versus moving object until vo = 0

Preliminary applications of this idea show that adapting the algorithm for maximum
extension allows us to solve scenarios which were previously unsolved, such as scenario 5,
variation 3, as shown in Fig. 6.2. The method also results in fewer nodes in the solution
path. On the other hand, implementation of this modification should take into account
how to verify collision for these long distance, so as to ensure that the object does not
trespass obstacles.

(a) Goal path (b) Final object position

Figure 6.2: “Square_with_single_drone’ variant 3 - Alternate version with RRT extending
until vo = 0
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6.2 Simulations in the ROS/Gazebo environment

As mentioned before, during these simulations the object was also actuated, for the
reason that Pymunk doesn’t work properly when the constraints are moving. A more
realistic simulation environment can be found in the Gazebo software. In it, we can simulate
a drone controlled by a PX4 flight stack, which can be used to manipulate an object. The
drone’s trajectory can be commanded via ROS [Joseph 2018]. Such an environment is
shown in Fig. 6.3. We expect to have this simulation implemented for the single drone
scenario by the end of the internship.

Figure 6.3: Gazebo simulation of scenario 5

6.3 Weighted planning

We remarked in chapter 5 that the path chosen does not always minimize the effort
required by the drones. One possible way to do this is to create a cost function C(T⃗ ) that
is a function on the drones’ thrust, which could be attached to the edges. Since the path
to the goal is calculated via Dijkstra’s algorithm on top of the expanded tree, these costs
would enable us to choose the path thar requires the least effort on the drones’ part.

6.4 Smooth drone movement

The discretization of the drones’ paths give rise to two problems: the first is how
to make sure the movement of the drones from one position to another results in the
desired object configuration. Although we used the notation q(d⃗) previously, this is an
abuse: as illustrated in Fig. 6.4, the same drone configuration can result in different object
configurations, which means the path to get to a destination is also important, and was
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largely ignored during discretization.

Figure 6.4: Two different object configurations that can arise from the same drone config-
uration

The second problem that needs to be dealt with is that the path found is not always
“smooth”: for example, in Fig. 6.5, the two drones alternate which one is “strained” and
which one is “loose” between one path point and the other. This situation is evidently not
realistic.

Figure 6.5: Drones alternating contact mode between one step and the other
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6.5 Quasi-dynamic formulation

Scenario 5 (especially variant 5) showed that the quasi-static condition might be too
restrictive to solve certain situations. Moreover, this restriction is unrealistic insofar as
there is no link between velocity and force except that both should be valid for the move-
ment to happen. One possible modification that should be studied is to substitute (3.19)
for a quasi-dynamic formulation [Cheng 2021a]:

Mv̇o = G(c)λ⃗+ F⃗B
e (q) (6.1)

In this formulation, we should use a small time increment so that accelerations are
not too significant. Under this relaxed assumption, we could get solutions for some of the
scenarios which were previously unsolved and also have an explicit link between force and
velocity.



Chapter 7

Conclusion

All in all, this internship was a unique opportunity for me to know firsthand how
research is conducted at a top tier laboratory. I am honored to have been part of LAAS’s
quest to make life more comfortable through technology, and I hope to have contributed,
even if only a bit, to the lab’s projects on UAV development.

As for the method exposed in this work, it is noticeable that it has potential, even
taking into account its shortcomings, for it offers some new insight into how to deal with
cooperative manipulation and environment interaction in the context of UAV object ma-
nipulation. This method surely deserves further investigation so that it can be exploited
to its full potential.
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